• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação de planos] Dùvida exercício 8

[Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 21:20

Estou com mais uma dúvida, só que agora no seguinte exercício:

Deduza uma equação do plano definido pelo eixo z e pelo ponto P(4,4,1).
Gabarito: x-y=0


Resolvi da seguinte forma:
Por o plano estar definido pelo eixo z, imaginei que o vetor v=(0,0,1) fosse pertencente ao plano.
Como o vetor normal do plano é perpendicular a este vetor v, sei que n.v=0.

Então

n.v=0

(a,b,c).(0,0,1)=0

c=0

Então achei o vetor normal ao plano n=(0,0,1)

Achando o valor de d:

1(1)+d=0

d=-1

Colocando o vetor normal e d na equação:

z-1=0

z=1

Como podem ver o meu resultado deu diferente do gabarito...
Minha resolução está certa?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 21:28

o vetor normal ao plano não é (0,0,1)
é (a,b,c) como voce achou que c=0
então o vetor normal é (a,b,0)

como o plano é definido pelo eixo z então qualquer ponto do eixo z pertence ao plano
por isso pegue algum destes pontos e diga que este ponto é C (sugiro o ponto (0,0,0) para facilitar nos calculos), encontre o vetor PC, sendo que o produto vetorial

\overrightarrow{PC}\times\overrightarrow{v}

dara o vetor normal ao plano, com isso voce determina a equação do plano.
Editado pela última vez por young_jedi em Sáb Out 13, 2012 22:33, em um total de 2 vezes.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MarceloFantini » Sáb Out 13, 2012 21:47

Jedi, a notação usual de produto vetorial é \vec{u} \times \vec{v} ou \vec{u} \wedge \vec{v}. A notação que você usou é a de produto tensorial.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 22:00

Pelo que eu entendi... quando o plano for paralelo ao eixo z, poderemos utilizar o vetor v=(0,0,1).
E quando um plano for definido pelo eixo z, poderemos utilizar o vetor v=(1,1,0)
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 22:04

tanto quando o plano for paralelo quando o vetor for definido o vetor normal ao plano é do tipo (a,b,0)
e nos dois casos nos podemos utilizar o vetor (0,0,1) para encontrar o vetor normal, so que quando o plano é definido pelo eixo z os pontos que estão sobre o eixo z podem ser utilizados (0,0,z) para encontrar outro vetor em um plano paralelo não, pois estes pontos não pertencem ao plano
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 22:14

young_jedi escreveu:o vetor normal ao plano não é (0,0,1)
é (a,b,c) como voce achou que c=0
então o vetor normal é (a,b,0)

como o plano é definido pelo eixo z então qualquer ponto do eixo z pertence ao plano
por isso pegue algum destes pontos e diga que este ponto é C (sugiro o ponto (0,0,0) para facilitar nos calculos), encontre o vetor PC, sendo que o produto vetorial

\overrightarrow{PC}\times\overrightarrow{PC}

dara o vetor normal ao plano, com isso voce determina a equação do plano.


Então eu só preciso pegar um ponto, por exemplo, C(0,0,1) do eixo z, fazer o vetor CP ou PC e fazer produto vetorial CP x CP ou PC x PC? Não sabia q dava pra fazer produto vetorial do mesmo vetor e achar um vetor perpendicular a ele... eu achava que tinha que ter 2 vetores diferentes coplanares.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 22:31

Na verdade voce precisa pegar dois pontos do eixo z
por esemplo C(0,0,1) e O(0,0,0) e ai fazer o produto vetorial PO x CO para encontrar o vetor normal eu digitei errado anteriormente vou corrigir, desculpa ai.O que voce disse esta correto precisa ser dois vetores coplanares
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 22:45

O que me anda confundindo muito são os seguintes exercícios:

Escreva uma equação do plano paralelo ao eixo z e que contém os pontos (2,0,0) e (0,3,2). Gabarito:3x+2y=6

Escreva uma equação do plano paralelo ao eixo z que contém o ponto (1,1,1). Gabarito: z=1

Como pode ver, nos dois exercícios o plano é paralelo ao eixo z e olha como as equações no gabarito são totalmente diferentes! :x
E o resultados do gabarito estão certos, pois confirmei com uma colega.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dùvida exercício 8

Mensagempor young_jedi » Sáb Out 13, 2012 23:23

o que acontece é que podem ter infinitos planos paralelos ao exio z, a unica coisa que eles tem em comum é que o vetor normal deles é ortogonal ao eixo z.
no primeiro caso por exemplo voce pode pegar os pontos A(2,0,0) e B(0,3,2) encontra vetor AB e fazer o produto vetorial com o vetor (0,0,1) ai voce encontra o vetor normal ao plano.

A segundo caso acho estranho o resultado ter dado z=1 pois este plano é ortogonal ao eixo z e não paralelo, a resposta poderia ser x=1 ou então y=1 este dois planos são soluções para a questão mais o plano z=1 não, sugiro que voce verifique esta questão com o professor ou então de alguma fonte onde ela foi retirada.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MarceloFantini » Sáb Out 13, 2012 23:45

MrJuniorFerr escreveu:Escreva uma equação do plano paralelo ao eixo z que contém o ponto (1,1,1). Gabarito: z=1

Este plano não é paralelo ao eixo z, e sim ortogonal. Ele é paralelo ao plano xy, ou paralelo aos eixos x e y simultaneamente. Essa pergunta contém uma contradição: não é possível ser paralelo ao eixo se cortá-lo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação de planos] Dùvida exercício 8

Mensagempor MrJuniorFerr » Sáb Out 13, 2012 23:54

Mandei um e-mail pra minha professora a respeito desse exercício. só me resta aguardar...
Irei dormir e 5:15h da manhã estarei de volta para a luta. haha
A minha lista têm 31 exercícios, eu já a terminei. Mas como ela deve também ser entregue, estou juntamente refazendo-a e passando a limpo. Estou com dúvidas nesses exercícios pq vc jedi, tinha me ensinado a fazer pelo método divindindo a equação geral do plano por a, etc. Mas, quero dominar a forma convencional para resolve-los.
Obrigado pela grande ajuda Marcelo e Jedi. Eu jamais teria terminado essa lista sem a ajuda de vocês, muitas dúvidas ficariam para trás. :-D
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59