• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida {equaç. da reta/condiç. de perpendicularismo}

Dúvida {equaç. da reta/condiç. de perpendicularismo}

Mensagempor Danilo » Sáb Jun 09, 2012 22:40

Pessoal, não estou conseguindo chegar na solução de um exercício.

Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.

Bom, tentei fazer assim:

Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida {equaç. da reta/condiç. de perpendicularismo}

Mensagempor LuizAquino » Dom Jun 10, 2012 09:59

Danilo escreveu:Pessoal, não estou conseguindo chegar na solução de um exercício.

Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.

Bom, tentei fazer assim:

Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !


A interseção entre u e t é M = (-7/6, 7/6). Refaça as suas contas a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida {equaç. da reta/condiç. de perpendicularismo}

Mensagempor Danilo » Dom Jun 10, 2012 16:25

Nossa, uma pequena desatenção. Deu certo aqui. Valeu !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.