por Matheus Lacombe O » Sáb Mai 26, 2012 12:01
Quarto ponto coordenado de um paralelogramo- Olá pessoal! Novamente venho recorrer a vocês a fim de sanar minhas dúvidas - agora, sobre geometria anaítica. Bem, estou resolvendo minha antiga apostila do ensino médio sobre Analítica e heis que deparo-me com um problema que parece sem solução.
- O anunciado apresenta uma situação em que dentro de um plano cartesiano possúo apenas três pontos conhecidos de um paralelogramo, devo então encontrar o quarto ponto desta figura. O enunciado também faz a seguinte observação: "As diagonais de um paralelogramo 'encontram-se' em seus respectivos pontos médios".
Pontos do plano: A(0,1), B(2,5), C(3,4) e por dedução, D(X,Y).
Tentativas:- Tentei usar a definição do paralelogramo -
"Um paralelogramo é um polígono de quatro lados (quadrilátero) cujos lados opostos são 'iguais' e 'paralelos'." - para lidar com eqüidistâncias comparando a distância
BC com a distância
DA, porem de nada adianta porque o resultado em um é inteiro e em outro são duas equações de segundo grau - uma para 'x' e outra para 'y'. Eu precisaria de dois pontos que eqüdistam do ponto 'P' para lidar com a eqüdistância, que foi a unica solução que me veio a cabeça até o momento, porém não existem dois pontos equidistantes de 'P' neste problema. Então fiquei travado nesta.
PS: Pela definição de paralelogramo eu - visualmente - sei que, provavelmente, o ponto 'D' trata-se na verdade de D(1,0) para que BC fique paralelo a AD. Porém não consigo chegar a isto.
Editado pela última vez por
Matheus Lacombe O em Dom Mai 27, 2012 18:54, em um total de 2 vezes.
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por Matheus Lacombe O » Sáb Mai 26, 2012 20:09
Umm? Nem uma dica?
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por Matheus Lacombe O » Dom Mai 27, 2012 16:10
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo de um ponto do paralelogramo
por jmcustodio » Dom Set 30, 2012 23:46
- 1 Respostas
- 1357 Exibições
- Última mensagem por young_jedi

Dom Set 30, 2012 23:59
Álgebra Linear
-
- [Cálculo de área de triângulo] Com os três eixos coordenado.
por Matheus Lacombe O » Sáb Out 13, 2012 16:30
- 1 Respostas
- 3447 Exibições
- Última mensagem por e8group

Sáb Out 13, 2012 17:51
Geometria Analítica
-
- [UFRJ] inequação ( quarto grau)
por JKS » Sáb Ago 25, 2012 05:03
- 1 Respostas
- 1450 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 25, 2012 10:33
Inequações
-
- Simplificação do quociante de polinômios de quarto grau
por Caroline Oliveyra » Qui Jun 23, 2011 22:19
- 4 Respostas
- 4000 Exibições
- Última mensagem por Caroline Oliveyra

Qui Jun 23, 2011 23:36
Polinômios
-
- Sabendo que um quarto tem 5 portas, determine o número de ma
por amanda s » Sex Nov 15, 2013 13:40
- 1 Respostas
- 4060 Exibições
- Última mensagem por DanielFerreira

Seg Fev 17, 2014 14:21
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.