• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em exercício - Equação da reta

Dúvida em exercício - Equação da reta

Mensagempor Danilo » Qui Mai 24, 2012 05:11

Pessoal, estou com dificuldades para entender o enunciado... segue o exercício!

Entre os triângulos OAB com o vértice O na origem e os outros dois vértices A e B, respectivamente, nas retas y =1 e y =3 e alinhados com o ponto P(7,0), determine aquele para o qual é mínima a soma dos quadrados dos lados.

Mas por que ''os triângulos OAB''? ''determine aquele (seria aquele triangulo para o qual é mínima a soma dos quadrados dos lados?)

Quem puder me explicar e me dar idéia sobre qual caminho seguir eu agradeço!
Editado pela última vez por Danilo em Sex Mai 25, 2012 03:30, em um total de 1 vez.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida em exercício - Equação da reta

Mensagempor Danilo » Qui Mai 24, 2012 05:30

Bom, para tentar resolver, inicialmente, eu fiz o gráfico com o ponto (7,0), tracei respectivamente as retas que passam pelos pontos (0,1), (0,3), tracei também a reta que passa pelos pontos (0,1), (0,3), (7,0). Depois tracei um segmento que vai da origem até as retas... mas não consegui visualizar triângulo algum... . To meio confuso, quem puder dar uma luz aí.. agradeço!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida em exercício - Equação da reta

Mensagempor LuizAquino » Sex Mai 25, 2012 11:32

Danilo escreveu:Pessoal, estou com dificuldades para entender o enunciado... segue o exercício!

Entre os triângulos OAB com o vértice O na origem e os outros dois vértices A e B, respectivamente, nas retas y =1 e y =3 e alinhados com o ponto P(7,0), determine aquele para o qual é mínima a soma dos quadrados dos lados.

Mas por que ''os triângulos OAB''? ''determine aquele (seria aquele triangulo para o qual é mínima a soma dos quadrados dos lados?)

Quem puder me explicar e me dar idéia sobre qual caminho seguir eu agradeço!


Danilo escreveu:Bom, para tentar resolver, inicialmente, eu fiz o gráfico com o ponto (7,0), tracei respectivamente as retas que passam pelos pontos (0,1), (0,3), tracei também a reta que passa pelos pontos (0,1), (0,3), (7,0). Depois tracei um segmento que vai da origem até as retas... mas não consegui visualizar triângulo algum... . To meio confuso, quem puder dar uma luz aí.. agradeço!


As figuras abaixo ilustram três exemplos para o triângulo OAB. Mas note que há infinitos exemplos. Basta "deslizar" o ponto A sobre a reta y = 1 que teremos um outro ponto B correspondente na reta y = 3 (e de tal modo que A, B e P estão alinhados).

figura1.png
figura1.png (4.39 KiB) Exibido 3922 vezes


figura2.png
figura2.png (4.25 KiB) Exibido 3922 vezes


figura3.png
figura3.png (5.21 KiB) Exibido 3922 vezes


De todos os infinitos triângulos OAB que podemos formar, deseja-se aquele que tem a seguinte soma como a menor possível:

s = \overline{OA}^2 + \overline{AB}^2 + \overline{BO}^2

Agora tente concluir o execício. Se você não conseguir, então poste aqui até onde você conseguiu avançar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida em exercício - Equação da reta

Mensagempor Danilo » Sáb Mai 26, 2012 15:12

Bom, tentei fazer assim:

Chamei o ponto B (b,3), o ponto A (a, 1). Como B, A e P estão alinhados, peguei os 3 pontos, montei o determinante e igualei a zero. Coloquei b em função de a e vi que b = 3a - 14. Aí, fazendo a distância entre os pontos OB, OA E BA e elevando tudo ao quadrado, logo vou obter o quadrado dos lados + a distância. Aí, cheguei no polinomio de segundo grau 14a² - 140a + 406 e não consegui terminar. Está correto o racionio? Tem maneiras mais simples de resolver? Valeu!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida em exercício - Equação da reta

Mensagempor LuizAquino » Sáb Mai 26, 2012 18:48

Danilo escreveu:Chamei o ponto B (b,3), o ponto A (a, 1). Como B, A e P estão alinhados, peguei os 3 pontos, montei o determinante e igualei a zero. Coloquei b em função de a e vi que b = 3a - 14. Aí, fazendo a distância entre os pontos OB, OA E BA e elevando tudo ao quadrado, logo vou obter o quadrado dos lados + a distância. Aí, cheguei no polinomio de segundo grau 14a² - 140a + 406 e não consegui terminar. Está correto o racionio?


Esse é o raciocínio esperado para o exercício.

Note que no final você obteve uma função como:

s(a) = 14a^2 - 140a + 406

Se você fizesse o gráfico dessa função, então teria uma parábola com concavidade para cima. Sendo assim, o vértice dessa parábola é o ponto de mínimo dessa função. A coordenada x desse vértice será dada por:

x_v = \frac{-(-140)}{2\cdot 14} = 5

Temos então que para a = 5 a soma será a menor possível.

Lembrando agora que b = 3a - 14, temos que b = 1.

Portanto, os pontos são A = (5, 1) e B = (1, 3).

Danilo escreveu:Tem maneiras mais simples de resolver?


Eu acredito que essa já é a maneira mais simples.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida em exercício - Equação da reta

Mensagempor Danilo » Sáb Mai 26, 2012 18:59

A é mesmo... pela enésima vez, muito obrigado !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}