• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Parábolas]

[Parábolas]

Mensagempor Ana_Rodrigues » Seg Nov 21, 2011 14:16

Obter uma equação da parábola que satisfaça as condições dadas

vértice: V(4,-3); eixo dos x, passando pelo ponto P(2,1)

Olá gente não estou conseguindo resolver esta questão e aqui no livro não tem nenhum exemplo parecido, minha dificuldade está quando se da um ponto da parábola. Não sei como obter essa equação!

Agradeço desde já, à quem me ajudar a entender!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Parábolas]

Mensagempor LuizAquino » Seg Nov 21, 2011 15:46

Ana_Rodrigues escreveu:Obter uma equação da parábola que satisfaça as condições dadas

vértice: V(4,-3); eixo dos x, passando pelo ponto P(2,1)


Eu vou assumir que a condição "eixo dos x" significa que o eixo de simetria da parábola deve ser paralelo ao eixo x. Se não for isso, então por favor informe o que significa "eixo dos x" no livro (ou material) de onde você retirou essa questão.

Assumindo essa condição, note que a concavidade dessa parábola é para a esquerda (já que a coordenada x de P é menor do que a coordenada x de V).

Sendo assim, a equação dessa parábola tem o formato:

x - h = -\frac{1}{2p}(y-k)^2 , sendo (h, k) o vértice da parábola e p a distância entre o foco e a diretriz.

Já que V=(4, -3), então temos que h = 4 e k = -3. Portanto a equação fica:

x - 4 = -\frac{1}{2p}(y+3)^2

Já que a parábola deve passar pelo ponto P=(2, 1), substituindo x = 2 e y = 1 na equação da parábola, ficamos com:

2 - 4 = -\frac{1}{2p}(1+3)^2

Resolvendo essa equação você obtém que p = 4.

Portanto, a equação da parábola será:

x - 4 = -\frac{1}{8}(y+3)^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Parábolas]

Mensagempor Ana_Rodrigues » Seg Nov 21, 2011 19:29

LuizAquino escreveu:Eu vou assumir que a condição "eixo dos x" significa que o eixo de simetria da parábola deve ser paralelo ao eixo x. Se não for isso, então por favor informe o que significa "eixo dos x" no livro (ou material) de onde você retirou essa questão.



Sim, a condição quer dizer que o eixo de simetria da parábola é paralelo ao eixo x.

Desculpe a demora na resposta, eu estava na aula.

Obrigada pela resposta!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.