por jeffersonricardo » Dom Ago 22, 2010 08:29
determine a distancia do ponto Po à reta r no caso:
Po(2,5) e r: y = 1
-
jeffersonricardo
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Ago 16, 2010 15:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletronica e de telecunicaçao
- Andamento: cursando
por Pedro123 » Seg Ago 23, 2010 22:24
Fala jefferson, como está meu caro?
então seguinte, nessa questão, temos 2 formas de fazer, uma que usa uma fórmula, e outra que usa um pouco de geometria e raciocínio. vamos mostrar os 2 jeitos de fazer.
Veja que a Reta é Y = 1, portanto é uma reta paralela ao eixo X correto?
agora, vamos analisar essa reta em relação ao ponto, lembrando de um dos conceitos da geometria, vemos que a menor distância de um ponto a uma reta, é a perpendicular que liga este ponto à esta reta.
Portanto, perceba que, para que a reta que liga o Ponto Po A reta r seja perpendicular, devemos pegar um ponto na reta r, que tenha o mesmo valor de x que o ponto Po, logo esse ponto será na reta r (2,1) só que se temos 2 pontos de mesmo valor de abssissa, a distância é a variação de Y, logo D = Ypo - Yr --> D = 5-1 = 4.
Essa é a resolução usando o raciocínio mais lógico, eu sei, ficou um pouco confuso.. xD, qualquer duvida é so perguntar
Agora, também temos uma fórmula especifica para calcular a distancia de um ponto até uma reta que é dada por:
D = |Axo + Byo + C| / V(A² + B²), onde A B e C são os coeficientes da reta do tipo Ax + By + C = 0, e xo e yo são as coordenadas do ponto.
Como a Reta r é y = 1, podemos dizer que y - 1 = 0 , de onde tiramos que , A = 0, B =1 , C = -1 e o ponto é Po(2,5), logo Xo= 2, Yo = 5. Substituindo:
D = |0.2 + 1.5 -1| /V(0² + 1²) --> D = |5 - 1|/ 1 --> da mesma forma: D = 4.
abraços, qualquer duvida, como disse antes é so falar abraços ^^
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria analítica estudo da reta
por jeffersonricardo » Dom Ago 22, 2010 08:22
- 0 Respostas
- 1293 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:22
Geometria Analítica
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1509 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1374 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- Geometria Analitica - Distância de ponto à reta.
por Gutembreg Balbino » Seg Mai 05, 2014 21:14
- 4 Respostas
- 2675 Exibições
- Última mensagem por Gutembreg Balbino

Qua Mai 07, 2014 08:52
Geometria Analítica
-
- Estudo do ponto - Geometria Analítica!
por Iza » Qua Set 10, 2008 18:16
- 3 Respostas
- 4797 Exibições
- Última mensagem por admin

Qui Set 11, 2008 15:48
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.