• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria analítica estudo da reta distancia do ponta à reta

geometria analítica estudo da reta distancia do ponta à reta

Mensagempor jeffersonricardo » Dom Ago 22, 2010 08:29

determine a distancia do ponto Po à reta r no caso:
Po(2,5) e r: y = 1
jeffersonricardo
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Ago 16, 2010 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletronica e de telecunicaçao
Andamento: cursando

Re: geometria analítica estudo da reta distancia do ponta à

Mensagempor Pedro123 » Seg Ago 23, 2010 22:24

Fala jefferson, como está meu caro?

então seguinte, nessa questão, temos 2 formas de fazer, uma que usa uma fórmula, e outra que usa um pouco de geometria e raciocínio. vamos mostrar os 2 jeitos de fazer.

Veja que a Reta é Y = 1, portanto é uma reta paralela ao eixo X correto?
agora, vamos analisar essa reta em relação ao ponto, lembrando de um dos conceitos da geometria, vemos que a menor distância de um ponto a uma reta, é a perpendicular que liga este ponto à esta reta.

Portanto, perceba que, para que a reta que liga o Ponto Po A reta r seja perpendicular, devemos pegar um ponto na reta r, que tenha o mesmo valor de x que o ponto Po, logo esse ponto será na reta r (2,1) só que se temos 2 pontos de mesmo valor de abssissa, a distância é a variação de Y, logo D = Ypo - Yr --> D = 5-1 = 4.
Essa é a resolução usando o raciocínio mais lógico, eu sei, ficou um pouco confuso.. xD, qualquer duvida é so perguntar

Agora, também temos uma fórmula especifica para calcular a distancia de um ponto até uma reta que é dada por:

D = |Axo + Byo + C| / V(A² + B²), onde A B e C são os coeficientes da reta do tipo Ax + By + C = 0, e xo e yo são as coordenadas do ponto.

Como a Reta r é y = 1, podemos dizer que y - 1 = 0 , de onde tiramos que , A = 0, B =1 , C = -1 e o ponto é Po(2,5), logo Xo= 2, Yo = 5. Substituindo:

D = |0.2 + 1.5 -1| /V(0² + 1²) --> D = |5 - 1|/ 1 --> da mesma forma: D = 4.

abraços, qualquer duvida, como disse antes é so falar abraços ^^
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?