• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em vetor

Dúvida em vetor

Mensagempor elis81 » Qui Abr 15, 2010 20:20

Alguém poderia me ajudar a fazer o seguinte exercício?
a)Mostre que v=(a,b) e w(-b,a) são vetores ortogonais;
b) Use o resultado da parte (a) para encontrar dois vetores ortogonais a v=(2,-3);
c) encontre dois vetores unitários que são ortogonais a (-3,4)
elis81
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 15, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Dúvida em vetor

Mensagempor Mathmatematica » Dom Jun 13, 2010 01:25

a) Dois vetores são ortogonais, ou seja, perpendiculares se, e somente se, o produto escalar dos dois der zero. Logo:

v.u=(a,b).(-b,a)=-ab+ab=0 \  \ \therefore c.q.d.
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Dúvida em vetor

Mensagempor Mathmatematica » Dom Jun 13, 2010 01:30

b) Seguindo a técnica do item a, para obtermos um vetor perpendicular a outro basta conservar uma de suas coordenadas e usar o inverso aditivo na outra. Em seguida, troque a abscissa pela ordenada. Logo, os dois vetores procurados são (-3,-2) \  e \ (3,2).
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Dúvida em vetor

Mensagempor Mathmatematica » Dom Jun 13, 2010 01:41

c) Seja (a,b) um vetor procurado.

Sabemos que esse vetor é unitário. Então, \sqrt{a^2+b^2}=1\Longrightarrow a^2+b^2=1.

Sabemos também que esse vetor é perpendicutar ao vetor (-3,4). Logo, (-3,4).(a,b)=0\Longrightarrow 4b=3a.

Fazendo b=\dfrac{3a}{4} e substituindo em a^2+b^2=1 temos:

a^2+\dfrac{9a^2}{16}=1\Longrightarrow 25a^2=16\Longrightarrow a=\pm \dfrac{4}{5}

Para a=\dfrac{4}{5} temos b=\dfrac{3}{5}.

Para a=-\dfrac{4}{5} temos b=-\dfrac{3}{5}.

Logo, os vetores procurados são \left(\dfrac{4}{5},\dfrac{3}{5}\right) \ e \ \left(-\dfrac{4}{5},-\dfrac{3}{5}\right).

Bons estudos Elis.

Observações:
_Qualquer erro, por favor, AVISEM!!!!!!!!!!!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.