por engel » Qua Dez 30, 2009 17:03
Tenho uma questão da FUVEST que diz assim:
A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0), e B é o centro da circinferência x²+y²-2x-4y=20. Então a equação de s é:
a)x-2y=-6
b) x+2y=6
c) x+y=3
d) y-x=3
e) 2x+y=6
A única forma de encontrar a resposta foi assim: y-yp=m.x-xp
y-3=-1/2.x-0
y-3=-x/2
x+2y=6 (B)
Mas pq ñão consigo achar resposta usando a fórmula do Raio da circinfeRência ( R= (raiz de Xc²+yc²-F) e então usar: (x-xc)²+(y+yc)²=R². Com esta fórmula não obterei a equação da reta?
Obrigada!
-
engel
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Dez 30, 2009 16:38
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Qui Dez 31, 2009 15:55
Boa tarde Engel!
Acredito que você tenha errado a resposta e vou mostrar o porque.
Primeiro, fiz uma figura para que você veja a situação (caso você não tenha feito):

Para começar o problema, devemos calcular o coeficiente angular de AB:

Como a reta

é perpendicular à reta

, temos:


Tendo o coeficiente angular e um ponto, podemos encontrar a equação da reta usando

:


Multiplicando ambos lados por 2:

Trocando de lado 6 e 2y:

Que é a resposta
A.
Espero ter ajudado!
Um abraço e Feliz Ano Novo!
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Outra Dúvida
por rodsales » Sáb Jun 06, 2009 21:41
- 1 Respostas
- 1414 Exibições
- Última mensagem por Marcampucio

Sáb Jun 06, 2009 22:38
Trigonometria
-
- Outra dúvida
por rodsales » Qui Jun 18, 2009 22:12
- 1 Respostas
- 1358 Exibições
- Última mensagem por Marcampucio

Sex Jun 19, 2009 00:48
Trigonometria
-
- Outra dúvida.
por rodsales » Seg Out 12, 2009 09:56
- 1 Respostas
- 1418 Exibições
- Última mensagem por Marcampucio

Seg Out 12, 2009 11:59
Trigonometria
-
- Outra duvida
por GABRIELA » Qui Fev 11, 2010 17:57
- 1 Respostas
- 1630 Exibições
- Última mensagem por MarceloFantini

Sex Fev 12, 2010 01:05
Geometria Espacial
-
- Outra Dúvida - Conjuntos
por joaopedrel » Dom Mar 14, 2010 20:03
- 2 Respostas
- 1569 Exibições
- Última mensagem por joaopedrel

Dom Mar 14, 2010 22:57
Conjuntos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.