por rochadapesada » Dom Dez 15, 2013 16:31
Não consigo desenrolar essa questão... PS.: como não dei algebra linear, então por favor não usem
- Anexos
-

-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Dom Dez 15, 2013 16:40
O que você não entendeu ? Outra forma de escrever o enunciado .Dado a reta

e os pontos

.Encontre um ponto pertencendo à reta

tal que a distância deste ponto ao ponto

seja a mesma ao ponto

. Em resumo , deve determinar

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por rochadapesada » Dom Dez 15, 2013 17:24
Sim, mas, iria ficar o seguinte neh:

ai fazendo as contas acho x0 + y0= 2, mas depois? O que faço?
-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Dom Dez 15, 2013 18:04
Na verdade a distância entre dois pontos

e dada por

. Por exemplo em

.

e não a fórmula que você apresentou .
Note que se

então para algum

real ,tem-se

. Em particular devemos escolher

tal que

.
Tente avançar .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por rochadapesada » Dom Dez 15, 2013 18:18
Eu ainda não vi isso amigo... Como vou fazer um negócio que o livro nem mostra essa sua explicação :/
-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Dom Dez 15, 2013 18:41
O livro fala sobre produto escalar ou interno,pois conheço tal livro .Então ,

. Calculando o produto escalar

em termos das componentes destes vetores vamos obter

. A raiz quadrada desta expressão forne a distância de

a

.
Agora como queres obter um ponto P equidistante de A,B sem impor que as distância dele a ambos pontos são iguais ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por rochadapesada » Dom Dez 15, 2013 19:04
Mas pode ter x-y? Porque eles são eixos diferentes (uma é abscissa e a outra é ordenada) e nesse livro aprendi que tem que somar ou subtrair apenas pelo seu respectivo eixo... Essa parte não consta no livro :/
-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Dom Dez 15, 2013 19:55
A notação só está complicada. Eu penso ser melhor escrever os vetores de uma forma diferente.
Como calcular a distância entre uma reta

e um ponto

?
Dados dois pontos

e

o vetor que liga estes pontos é escrito como

e suas componentes são as diferenças das coordenadas respectivas de cada ponto. Isto é,

.
Você sabe que os pontos

da reta

são todos escritos da forma



.
Assim, o vetor que liga a reta

ao ponto

é

e ao ponto

é

Pronto. Agora a distância entre a reta e o ponto será o módulo do respectivo vetor de ligação.
Se você deseja que as distâncias sejam iguais basta igualar os módulos. Assim, você obterá uma equação em

e , com a solução, poderá calcular o respectivo ponto da reta que dista o mesmo de

e

.
Eu acho que vai ser o ponto

a solução.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por rochadapesada » Dom Dez 15, 2013 21:14
agora entendi, vlw =DD
-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1417 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1293 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- geometria analítica estudo da reta distancia do ponta à reta
por jeffersonricardo » Dom Ago 22, 2010 08:29
- 1 Respostas
- 2283 Exibições
- Última mensagem por Pedro123

Seg Ago 23, 2010 22:24
Geometria Analítica
-
- [GA - Estudo da Reta] Exercício de GA com reta e plano
por matheus0807 » Qui Jun 05, 2014 15:12
- 0 Respostas
- 2005 Exibições
- Última mensagem por matheus0807

Qui Jun 05, 2014 15:12
Geometria Analítica
-
- [Estudo da reta] Determinar a equação de uma reta
por Isabelagarcia » Qui Jul 24, 2014 23:45
- 0 Respostas
- 1470 Exibições
- Última mensagem por Isabelagarcia

Qui Jul 24, 2014 23:45
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.