• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Elipsoide

Elipsoide

Mensagempor Man Utd » Seg Jul 29, 2013 11:26

Encontre a equação do elipsoide de revolução que contém o ponto (4,0,0) e o círculo c: x² + z² = 9, y = 1.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qua Jul 31, 2013 00:02

imagino que seja uma rotação entorno do eixo y, como ele deve conter a circunferência descrita então deve ser uma função do tipo

x^2+z^2+a.y^2=b

como ele deve conter a circunferência então temos que

x^2+z^2+a.1^2=b

x^2+z^2=b-a

9=a-b

mais como ela também deve conter o ponto (4,0,0)

4^2+0^2+a.0^2=b

16=b

com isso achamos que b=16 então é so encontra a utilizando a outra equação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qua Jul 31, 2013 10:20

young_jedi escreveu:imagino que seja uma rotação entorno do eixo y, como ele deve conter a circunferência descrita então deve ser uma função do tipo

x^2+z^2+a.y^2=b


Mas o Elipsoide de Revolução não é dessa forma?
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qua Jul 31, 2013 21:13

Sim pode ser escrito desta forma
Note que como você já tem um dos pontos e a equaç ão da circunferência é só determinar a e b
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qua Jul 31, 2013 21:41

young_jedi escreveu:Sim pode ser escrito desta forma
Note que como você já tem um dos pontos e a equaç ão da circunferência é só determinar a e b


mas desse jeito que eu coloquei, a resposta seria outra veja só:

\\\\ \frac{x^{2}}{a^{2}}+\frac{1^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1 \\\\ x^{2}+z^{2}=a^{2}-\frac{a^{2}}{b^{2}}  \\\\ 9=a^{2}-\frac{a^{2}}{b^{2}}  (I)

agora calculando valor de a,usando ponto (4,0,0)

\\\\ \frac{4^{2}}{a^{2}}+\frac{0^{2}}{b^{2}}+\frac{0^{2}}{a^{2}}=1 \Leftrightarrow a=4

finalmente calculando o valor de "b" em (I):
\\\\ 9=a^{2}-\frac{a^{2}}{b^{2}} \\\\ 9=16-\frac{16}{b^{2}} \\\\ 9b^{2}=16b^{2}-16\Leftrightarrow b=\frac{4\sqrt{7}}{7}

aonde errei? :-O
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qua Jul 31, 2013 21:48

você não errou em lugar algum amigo, ao substituir esses valores de a e b que você encontrou na sua equação original, você vai encontrar a mesma equação que eu coloquei, para que elas fiquem idênticas é apenas questão de manipulação algébrica, se não entender da um toque que eu te ajudo a finalizar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qui Ago 01, 2013 10:13

as respostas não seriam diferentes olha só:

seu modo, tomando a=25 e b=16 :

\\\\ x^{2}+z^{2}+25y^{2}=16 \\\\ \frac{x^{2}}{16}+\frac{z^{2}}{16}+\frac{y^{2}}{\frac{16}{25}}=1

meu modo tomando a=4*?7/7 e b=4:

\\\\ \frac{x^{2}}{16}+\frac{y^{2}}{\frac{16}{7}}+\frac{z^{2}}{16}}=1
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qui Ago 01, 2013 11:19

Tem um pequeno erro em minha resposta a equação na verdade e
9=b-a

Logo a=7

Assim as equações são iguais
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qui Ago 01, 2013 11:24

wlw,obrigado pela ajuda :) :) :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59