por Man Utd » Seg Jul 29, 2013 11:26
Encontre a equação do elipsoide de revolução que contém o ponto (4,0,0) e o círculo c: x² + z² = 9, y = 1.
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por Man Utd » Qua Jul 31, 2013 10:20
young_jedi escreveu:imagino que seja uma rotação entorno do eixo y, como ele deve conter a circunferência descrita então deve ser uma função do tipo

Mas o Elipsoide de Revolução não é dessa forma?

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por young_jedi » Qua Jul 31, 2013 21:13
Sim pode ser escrito desta forma
Note que como você já tem um dos pontos e a equaç ão da circunferência é só determinar a e b
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Man Utd » Qua Jul 31, 2013 21:41
young_jedi escreveu:Sim pode ser escrito desta forma
Note que como você já tem um dos pontos e a equaç ão da circunferência é só determinar a e b
mas desse jeito que eu coloquei, a resposta seria outra veja só:

agora calculando valor de a,usando ponto (4,0,0)

finalmente calculando o valor de "b" em (I):

aonde errei?

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por young_jedi » Qua Jul 31, 2013 21:48
você não errou em lugar algum amigo, ao substituir esses valores de a e b que você encontrou na sua equação original, você vai encontrar a mesma equação que eu coloquei, para que elas fiquem idênticas é apenas questão de manipulação algébrica, se não entender da um toque que eu te ajudo a finalizar
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Man Utd » Qui Ago 01, 2013 10:13
as respostas não seriam diferentes olha só:
seu modo, tomando a=25 e b=16 :

meu modo tomando a=4*?7/7 e b=4:

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por young_jedi » Qui Ago 01, 2013 11:19
Tem um pequeno erro em minha resposta a equação na verdade e

Logo a=7
Assim as equações são iguais
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Man Utd » Qui Ago 01, 2013 11:24
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.