por Danilo » Ter Nov 06, 2012 16:07
Obtenha os vértices B e C do triângulo equilátero ABC, sendo A = (1,1,0) e sabendo que o lado BC está contido na reta: (x,y,z) = t(0,1,-1).
Bom, pensei assim: eu já sei o vetor diretor de r, que é (1,1,0). Sei que cada ângulo interno vale 60 graus. Chamei o ponto B de (x,y,z). Como A = (1,1,0) então um vetor diretor da reta uqe passa por AB pode ser (x-1, y-1,z). Logo é só calcular o ângulo entre os vetores diretores usando a definição do produto interno. Mas o problema é que vai dar uma conta astronômica e eu não sei como eliminar as duas variáveis... eu não consigo encontrar uma outra relação tal que eu elimine x e y.
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Ter Nov 06, 2012 18:54
Danilo
Voce sabe que o B faz parte da reta portanto voce pode dizer que ele é

então o vetor diretor seria

como voce ja bem observou é só utilizar a definição de porduto escalar com o vetor diretor da reta,
vai dar uma conta um pouco grande, mais só com uma variavel, que pode ser isolada e encontrada seu valor,
É possivel que voce vai chegar a dois valores de t, substituindo na equação da reta voce encontra os pontos B e C
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Danilo » Qui Nov 08, 2012 02:09
young_jedi escreveu:Danilo
Voce sabe que o B faz parte da reta portanto voce pode dizer que ele é

então o vetor diretor seria

como voce ja bem observou é só utilizar a definição de porduto escalar com o vetor diretor da reta,
vai dar uma conta um pouco grande, mais só com uma variavel, que pode ser isolada e encontrada seu valor,
É possivel que voce vai chegar a dois valores de t, substituindo na equação da reta voce encontra os pontos B e C
1
Bom, eu fiz o produto interno entre o vetor AB = (-1,t-1,-t) e entre um dos vetores diretores da reta que passa por BC = (0,1,-1) e encontrei t=1 mas ao substituir eu não encontro os pontos procurados que são (0,0,0) e o outro (0,0,1)... o que estou errando?
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qui Nov 08, 2012 10:20
bom vamos la então
como o angulo entre ele deve ser 60º então nos temos que

o vetor diretor é



colocando o dois dentro da raiz em evidencia e tirando pra fora, da para simplicar com a outra raiz de dois e a divisão.

elevando os dois lados da equação ao quadrado



portanto

ou

substituindo

e

esses ai são os pontos B e C
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ângulo entre retas
por Claudin » Seg Jul 16, 2012 03:22
- 4 Respostas
- 2512 Exibições
- Última mensagem por Claudin

Seg Jul 16, 2012 04:19
Geometria Analítica
-
- Angulo entre retas
por LucasSG » Seg Jun 10, 2013 21:16
- 1 Respostas
- 2353 Exibições
- Última mensagem por young_jedi

Ter Jun 11, 2013 19:13
Geometria Analítica
-
- Ângulo entre duas retas
por Jonatan » Qui Jul 22, 2010 13:38
- 0 Respostas
- 3523 Exibições
- Última mensagem por Jonatan

Qui Jul 22, 2010 13:38
Geometria Analítica
-
- Angulo Entre Duas Retas
por mayconf » Sex Set 21, 2012 13:33
- 2 Respostas
- 17604 Exibições
- Última mensagem por mayconf

Sex Set 21, 2012 18:09
Geometria Analítica
-
- Determinar o Ângulo entre as seguintes retas
por mayconf » Seg Set 24, 2012 12:25
- 4 Respostas
- 4107 Exibições
- Última mensagem por mayconf

Ter Set 25, 2012 12:26
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.