• Anúncio Global
    Respostas
    Exibições
    Última mensagem

{Equação do plano}

{Equação do plano}

Mensagempor Danilo » Sex Out 26, 2012 01:15

Dadas as retas

r: \frac{x-2}{2} = \frac{y}{2} = z e s: x-2 = y = z, obtenha uma equação geral para o plano determinado por r e s.

Bom, sei como encontrar a equação do plano obtendo a normal e um de seus pontos mas eu não vejo como fazer isso tendo duas retas. E não vejo como duas retas determinam um plano... Grato desde já!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: {Equação do plano}

Mensagempor MarceloFantini » Sex Out 26, 2012 02:37

Seja \lambda o parâmetro da primeira reta e \mu da segunda.

Então

\frac{x-2}{2} = \frac{y}{2} = z = \lambda

e

x-2 = y = z = \mu.

Daí,

r: \begin{cases} x = 2 + 2 \lambda, \\ y = 2 \lambda, \\ z = \lambda, \end{cases}

e

s: \begin{cases} x = 2 \mu, \\ y = \mu, \\ z = \mu. \end{cases}

Na notação usual, a reta r será dada por r: (2,0,0) + \lambda (2, 2, 1) e a reta s por s: (0,0,0) + \mu (2, 1, 1).

Para obter a equação geral, faça como no outro tópico: calcule o produto vetorial dos vetores diretores, ou seja, calcule (2,2,1) \times (2,1,1) e substitua (2,0,0) para encontrar o coeficiente que falta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: {Equação do plano}

Mensagempor Danilo » Sex Out 26, 2012 10:31

MarceloFantini escreveu:Seja \lambda o parâmetro da primeira reta e \mu da segunda.

Então

\frac{x-2}{2} = \frac{y}{2} = z = \lambda

e

x-2 = y = z = \mu.

Daí,

r: \begin{cases} x = 2 + 2 \lambda, \\ y = 2 \lambda, \\ z = \lambda, \end{cases}

e

s: \begin{cases} x = 2 \mu, \\ y = \mu, \\ z = \mu. \end{cases}

Na notação usual, a reta r será dada por r: (2,0,0) + \lambda (2, 2, 1) e a reta s por s: (0,0,0) + \mu (2, 1, 1).

Para obter a equação geral, faça como no outro tópico: calcule o produto vetorial dos vetores diretores, ou seja, calcule (2,2,1) \times (2,1,1) e substitua (2,0,0) para encontrar o coeficiente que falta.


Mais uma vez, obrigado Marcelo! Entendi!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.