• Anúncio Global
    Respostas
    Exibições
    Última mensagem

nao sei com terminar este calculo

nao sei com terminar este calculo

Mensagempor weverton » Sex Out 08, 2010 18:05

encontre uma equaçao que seja satisfeita com as coordenadas de qualquer ponte P(x,y) cuja distancia do ponto A(2,3)
é sempre igual a 3.

fiz assim: d(p,a)=3
x=x2-x1
x=2-x

y=y2-y1
y=3-y

ai usei o teorema de pitagoras :
hipotenusa^2=x^2+y^2
3^2=(2-x)^2+(3-y)^2
9=x^2+4x+4 + y^2-6y+9

ai parei nisto nao sei com terminar me ajudem
nao sei se aplico na formula de baskara ma ajudem
me expliquem com resolveram
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: nao sei com terminar este calculo

Mensagempor Elcioschin » Sex Out 08, 2010 18:13

Distância d do ponto P(x, y) ao ponto A(2, 3):

d² = (x - xA)² + (y - yA)² -----> 3² = (x - 2)² + (y - 3)² ----> 9 = (x² - 4x + 4) + (y² - 6y + 9) ----> x² + y² - 4x - 6y + 4 = 0

Esta é a equação de uma circunferência com centro em A e raio R = 3
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.