• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Subespaços Vetoriais

Subespaços Vetoriais

Mensagempor felipe_ad » Sex Ago 27, 2010 19:56

Olá,
Eu até entendi as condições de subespaço vetorial, mas tem exercicios que não consigo resolver. Por isso venho aqui pedir ajuda a quem sabe.
Sao os seguintes:

Verificar se W é subespaço:
(a)V = R4 e W = {( x , y , z , t ) / z = x + 2y e t = x ? 3y}
(b)V = Rn e W = {v ?V / Av = O, A uma matriz m × n e O a matriz nula m × 1}
(c)V = M2× 2 e W = { A / AT = TA, T uma matriz fixada em V }
(d)V = P2 ( x ) e W = { p ( x ) / p ( x ) + p? ( x ) = 0}
(e)V = P2 ( x ) e W = { p ( x ) / grau [ p ( x ) + x2 ] ? 1} ? {o ( x )}, o ( x ) o polinômio nulo.

Agradeço desde já.
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Subespaços Vetoriais

Mensagempor MarceloFantini » Sáb Ago 28, 2010 19:31

a) W = {(x,y,x+2y, x-3y); x,y \in \Re}.

1) O zero pertence pois tomando x e y iguais a zero fica (0,0,0,0).

2) Sejam u = (x_1,y_1,x_1+2y_1, x_1-3y_1) e v = (x_2,y_2,x_2+2y_2, x_2-3y_2).
u + v = (x_1,y_1,x_1+2y_1, x_1-3y_1) + (x_2,y_2,x_2+2y_2, x_2-3y_2) = (x_1 + x_2, y_1 + y_2, x_1 + x_2 + 2(y_1 + y_2), x_1 + x_2 -3(y_1 + y_2)) \; \therefore u+v \in W

3) \lambda \in \Re ; \; \lambda u = (\lambda x_1, \lambda y_1,\lambda x_1+2\lambda y_1, \lambda x_1-3\lambda y_1) \; \therefore \lambda u \in W

Nos outros basta fazer similar. Você pega a propriedade do subespaço e verifica as condições:

1) Zero tem que estar no subespaço;

2) Dados dois vetores, a soma tem que permanecer no subespaço;

3) Dado uma constante e um vetor, o produto tem que permanecer no subespaço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.