• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Retas] Pontos equidistantes

[Retas] Pontos equidistantes

Mensagempor luankaique » Qui Jul 25, 2013 22:34

Fala pessoal

Estou com dúvida em uma questão. A resposta é P(1,0,0), consegui até entender o raciocínio mas queria saber como fazer a questão "na tora", desenvolvendo tudo certinho.

Sejam:

A(1,1,1)
B(0,0,1)
r: X = (1,0,0) + t(1,1,1)

Determine os pontos de r equidistantes de A e B:
luankaique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 25, 2013 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Industrial Mecânica
Andamento: cursando

Re: [Retas] Pontos equidistantes

Mensagempor MateusL » Qui Jul 25, 2013 23:06

A distância de um ponto (x,y,z) até o ponto A é:

D_A(x,y,z)=\sqrt{(1-x)^2+(1-y)^2+(1-z)^2}

E até o ponto B:

D_B(x,y,z)=\sqrt{x^2+y^2+(1-z)^2}

Os pontos equidistantes de A e B são os pontos (x,y,z) que satisfazem:

D_A(x,y,z)=D_B(x,y,z)

\sqrt{(1-x)^2+(1-y)^2+(1-z)^2}=\sqrt{x^2+y^2+(1-z)^2}

Simplificando, chegamos a:

x+y-1=0

Além disso, temos que:

r:\ X=(1+t,t,t)

Então, para os pontos pertencentes a r, teremos x=1+t e y=t.

Temos, então, o seguinte sistema:

x+y=1
x=1+t
y=t

Resolvendo, encontramos t=0, portanto, o ponto procurado é (1,0,0).

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Retas] Pontos equidistantes

Mensagempor luankaique » Sex Jul 26, 2013 14:11

Consegui entender a questão.

Muito obrigado!
luankaique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 25, 2013 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Industrial Mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.