• Anúncio Global
    Respostas
    Exibições
    Última mensagem

considerando a reta

considerando a reta

Mensagempor GILSON DOS SANTOS » Qui Ago 23, 2012 14:08

Considerando a reta r : ax + by = 0, com a ?= 0, e o ponto N = (a; b),
(1) prove que r passa pela origem O = (0; 0);
(2) apresente um ponto qualquer P pertencente a r que nao seja a origem;
(3) calcule d(N; P), d(O; P) e d(N;O); e
(4) a partir das distancias calculadas no item anterior, explique por que r e perpendicular ao vetor
(a; b). Dica: Utilize um famoso teorema da Geometria Euclidiana, ou sua recproca.
GILSON DOS SANTOS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Ago 23, 2012 13:48
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: considerando a reta

Mensagempor MarceloFantini » Qui Ago 23, 2012 16:15

Prezado Gilson,

Por favor, antes de postar um tópico leia as Regras deste Fórum. Em especial, vide a regra 1.

O seu tópico não deverá ser respondido antes de estar de acordo com as regras.

Atenciosamente,
Equipe de Moderadores
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: considerando a reta

Mensagempor GILSON DOS SANTOS » Qui Ago 23, 2012 16:58

nessa questão eu não consegui fazer o item 4.
GILSON DOS SANTOS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Ago 23, 2012 13:48
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: considerando a reta

Mensagempor MarceloFantini » Qui Ago 23, 2012 17:08

Você pode tentar aplicar o teorema dos cossenos e encontrar o cosseno do ângulo. Por serem perpendiculares, o resultado será zero, mostrando que o ângulo será de 90°.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.