• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar se duas retas são concorrentes, paralelas...

Determinar se duas retas são concorrentes, paralelas...

Mensagempor samra » Ter Mai 08, 2012 12:52

Olá, bom dia,

teve um dia que eu vi num vídeo que é possivel definir se duas retas são paralelas, concorrentes ou coincidentes a partir da razão dos coeficientes A, B, e C das equações geral da duas reta. Mas não me lembro qual é mesmo a regra para isso.
Se eu nn estiver enganada, se \frac{A}{A'}=\frac{B}{B'}=\frac{C}{C'} as equações dadas são coincidentes.

Alguém se lembra desse método e poderia coloca-lo aki, pf?

Obg, Sammy
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Determinar se duas retas são concorrentes, paralelas...

Mensagempor Russman » Ter Mai 08, 2012 14:38

Retas:

ax+by +c = 0

dx+ey+f=0

Ou, de forma resumida

y=mx+n

y=qx+b

( tente, como exercício, determinar a relação dos coeficientes).

As retas serão coincidentes se m=q E b=n. Se somente m=q então são paralelas. Do contrário, são concorrentes pois lhes existe um ponto em comum.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Determinar se duas retas são concorrentes, paralelas...

Mensagempor samra » Ter Mai 08, 2012 22:23

Fazendo com a forma reduzida da formula eu ja sei rs
se {m}_{s}={m}_{r} e {n}_{r}={n}_{s} então, as retas são coincidentes;

se {m}_{s}={m}_{r} e {n}_{r}\neq{n}_{s} , as retas serão paralelas

e finalmente,
se {m}_{s}\neq{m}_{r} e {n}_{r}\neq{n}_{s} , as retas serão concorrentes.
Mas há uma forma mais simples de deduzir isso, sem passar para a forma reduzida. É a razão entre os coeficientes a, b e c da formula geral (é a aplicação indireta da mesma de cima)
E eu tinha esquecido qual é essa forma. Mas ja me lembrei, segue abaixo:

se \frac{A}{A'}=\frac{B}{B'}=\frac{C}{C'} => retas coincidentes

se \frac{A}{A'}=\frac{B}{B'}\neq\frac{C}{C'} => retas paralelas

se \frac{A}{A'}\neq\frac{B}{B'}\neq\frac{C}{C'} => retas concorrentes. :)

vlw ai
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.