por samra » Ter Mai 08, 2012 12:52
Olá, bom dia,
teve um dia que eu vi num vídeo que é possivel definir se duas retas são paralelas, concorrentes ou coincidentes a partir da razão dos coeficientes A, B, e C das equações geral da duas reta. Mas não me lembro qual é mesmo a regra para isso.
Se eu nn estiver enganada, se

=

=

as equações dadas são coincidentes.
Alguém se lembra desse método e poderia coloca-lo aki, pf?
Obg, Sammy
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
-
samra
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sex Jan 27, 2012 11:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informatica
- Andamento: formado
por Russman » Ter Mai 08, 2012 14:38
Retas:


Ou, de forma resumida


( tente, como exercício, determinar a relação dos coeficientes).
As retas serão coincidentes se

E

. Se somente

então são paralelas. Do contrário, são concorrentes pois lhes existe um ponto em comum.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por samra » Ter Mai 08, 2012 22:23
Fazendo com a forma reduzida da formula eu ja sei rs
se

e

então, as retas são coincidentes;
se

e

, as retas serão paralelas
e finalmente,
se

e

, as retas serão concorrentes.
Mas há uma forma mais simples de deduzir isso, sem passar para a forma reduzida. É a razão entre os coeficientes a, b e c da formula geral (é a aplicação indireta da mesma de cima)
E eu tinha esquecido qual é essa forma. Mas ja me lembrei, segue abaixo:
se

=

=

=> retas coincidentes
se

=



=> retas paralelas
se





=> retas concorrentes.
vlw ai
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
-
samra
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sex Jan 27, 2012 11:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informatica
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria analítica] Duas retas concorrentes
por fernandocez » Qua Mai 08, 2013 18:48
- 3 Respostas
- 3739 Exibições
- Última mensagem por fernandocez

Sex Dez 20, 2013 09:54
Geometria Analítica
-
- Retas concorrentes
por marquinhoibvb » Qui Jun 05, 2008 22:39
- 1 Respostas
- 10539 Exibições
- Última mensagem por admin

Sex Jun 06, 2008 00:27
Geometria Analítica
-
- Retas Concorrentes
por lsergio_santos » Qui Jun 11, 2015 17:12
- 1 Respostas
- 2592 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:04
Geometria Plana
-
- [GEOMETRIA ANALITICA] RETAS CONCORRENTES
por Patrick_GA » Qui Abr 23, 2015 10:52
- 0 Respostas
- 2049 Exibições
- Última mensagem por Patrick_GA

Qui Abr 23, 2015 10:52
Geometria Analítica
-
- Exercício sobre Feixe de retas concorrentes - DÚVIDA
por Danilo » Sáb Mai 26, 2012 21:00
- 6 Respostas
- 12601 Exibições
- Última mensagem por LuizAquino

Ter Out 14, 2014 13:43
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.