• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pontos Colineares

Pontos Colineares

Mensagempor Claudin » Qui Abr 05, 2012 19:19

Mostre que os pontos (0,1,-1), (1,3,0) e (2,5,1) são colineares.


Também não consegui resolver esse exercício, fiz um com dois pontos, ai fiz uma relação de proporcionalidade entre os pontos e deu certo.

Agora com os três pontos não deu certo.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Pontos Colineares

Mensagempor Lucio Carvalho » Qui Abr 05, 2012 20:06

Olá Claudin,
se os pontos A, B e C são colineares, os vetores AB e BC (nota: falta a seta) terão de ter a mesma direção, ou seja, terão de ser colineares.

vetor AB = B - A = (1,3,0) - (0,1,-1) = (1,2,1)

vetor BC = C - B = (2,5,1) - (1,3,0) = (1,2,1)

Se os vetores têm a mesma direção, existe um \lambda tal que:

vetor AB = \lambda.(vetor BC)

(1,2,1) =\lambda.(1,2,1)

Logo, \lambda=1

Resposta: Os pontos são colineares.
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Pontos Colineares

Mensagempor LuizAquino » Qui Abr 05, 2012 21:22

Lucio Carvalho escreveu:os vetores AB e BC (nota: falta a seta)


Para inserir as setas (bem como as outras notações matemáticas), use o LaTeX. Por favor, vide o tópico:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74

No caso dos vetores, basicamente há duas formas de inserir as setas.

Forma 1)

Use o código:

Código: Selecionar todos
[tex]\vec{AB}[/tex]


Resultado:

\vec{AB}

Forma 2)

Use o código:

Código: Selecionar todos
[tex]\overrightarrow{AB}[/tex]


Resultado:

\overrightarrow{AB}

Observação

Note que a Forma 1) é mais interessante de ser usada quando temos apenas uma letra em minúsculo: \vec{u} . Já a Forma 2) é mais interessante de ser usada quando temos duas letras em maiúsculo: \overrightarrow{AB} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Pontos Colineares

Mensagempor Claudin » Qui Abr 05, 2012 22:31

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)