por Thiago Silveira » Qua Jun 08, 2011 23:26
Oi pessoal, como vão.
To estudando Geometria Analítica na facul e to com dificuldade de descobrir um vetor normal a um plano dado. Como fazer isso se eu tiver a equação vetorial de um plano? Eu li alguma coisa sobre colocar a equação na forma geral e assim pegar os coeficientes dela.
Ex: 2x+5y+z+2=0
aí o vetor seria:
(2,5,1)
É isso mesmo ou tem outro modo?
Até mais e obrigado desde ja
-
Thiago Silveira
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Ago 15, 2010 17:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por LuizAquino » Qui Jun 09, 2011 23:18
Dado um ponto
P do plano e dois vetores linearmente independentes paralelos a ele, sabemos que a equação vetorial desse plano será dada por:

, sendo
t e
m números reais. Os vetores

e

são chamados de
vetores diretores ou
vetores base do plano.
Por outro lado, sabemos que um vetor normal ao plano é aquele que é ortogonal a todos os vetores paralelos a esse plano. Isto é, se

é um vetor normal ao plano dado pela equação anterior, então

e

.
Por fim, sabemos que um possível vetor que é ortogonal ao mesmo tempo a outros dois vetores é dado pelo produto vetorial entre eles.
Ou seja, considerando aquela equação vetorial, podemos tomar que um vetor normal ao plano será dado por:

.
ExemploSeja o plano

.
Um vetor normal a esse plano é:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Vetor normal a uma esfera
por suziquim » Sex Jul 01, 2011 13:03
- 0 Respostas
- 3082 Exibições
- Última mensagem por suziquim

Sex Jul 01, 2011 13:03
Geometria Analítica
-
- Calculo de vetor normal à curva de equação.
por Sobreira » Qua Mar 20, 2013 09:36
- 3 Respostas
- 3421 Exibições
- Última mensagem por Sobreira

Sex Mar 22, 2013 14:38
Cálculo: Limites, Derivadas e Integrais
-
- [Equação do Plano - Vetor]
por raimundoocjr » Qua Set 18, 2013 23:37
- 0 Respostas
- 987 Exibições
- Última mensagem por raimundoocjr

Qua Set 18, 2013 23:37
Cálculo: Limites, Derivadas e Integrais
-
- Plano tangente e vetor gradiente
por carolzinhag3 » Sáb Abr 15, 2017 23:38
- 0 Respostas
- 1048 Exibições
- Última mensagem por carolzinhag3

Sáb Abr 15, 2017 23:38
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo2: Derivada Parcial] Plano tg, Vetor Gradiente
por Claudio Parana » Qua Fev 05, 2014 20:06
- 0 Respostas
- 1198 Exibições
- Última mensagem por Claudio Parana

Qua Fev 05, 2014 20:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.