• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão de Polinômios

Divisão de Polinômios

Mensagempor Claudin » Qua Ago 03, 2011 20:25

Não consigo encontrar uma forma mais fácil para dividir os polinômios.
O jeito que encontrei foi deduzindo raízes, ou jogando no WolframAlpha

\frac{x^3-x^2-8x+12}{x^4-2x^3-7x^2+20x-12}= \frac{\cancel{(x+3)(x-2)^2}}{\cancel{(x+3)(x-2)^2}(x-1)}= \boxed{\frac{1}{(x-1)}}
Editado pela última vez por Claudin em Qui Ago 04, 2011 18:27, em um total de 5 vezes.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Divisão de Polinômios

Mensagempor Claudin » Qui Ago 04, 2011 03:04

Alguém confirma esta resolução?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Divisão de Polinômios

Mensagempor giulioaltoe » Qui Ago 04, 2011 15:31

claudin, geralmente essas questoes polinomiais com uma ordem maior voce tera que deduzir raizes!
o macete e sempre comecar pelos menores valores do denominador e usa-lo no numerador para ver se elas anulam-se ou o contrario! essa questao e por ai msm!

obs: voce inverteu um sinal na sua equação entao o (x-3) vai se anular tbm!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Divisão de Polinômios

Mensagempor Claudin » Qui Ago 04, 2011 15:46

Já consertei. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}