por Elcioschin » Qui Abr 15, 2010 19:42
p(x) = x³ + bx² + cx + d
Para x = 1, y = p(1) = 0 -----> 0 = 1³ + b*1² + c*1 + d ----> b + c + d = - 1 ----> Equação I
Para x = 2, y = p(1) = 0 -----> 0 = 2³ + b*2² + c*2 + d ----> 4b + 2c + d = - 8 ----> Equação II
Para x = 0, y = p(0) = -2 ----> - 2 = (0)² + b*(0) + c*(0) + d ----> d = - 2 ----> III
I ----> b + c + (-2) = - 1 ----> b + c = 1 ----> IV
II ---> 4b + 2c + (-2) = - 8 ----> 2b + c = - 3 -----> V
IV + V -----> b = - 4 -----> c = 5
b - c = - 4 - 5 -----> b - c = - 9 -----> Alternativa B
Editado pela última vez por
Elcioschin em Sex Abr 16, 2010 09:59, em um total de 3 vezes.