• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[duvida] metodo de laguerre

[duvida] metodo de laguerre

Mensagempor ftdk » Dom Set 23, 2012 10:17

Bom dia.

" Determine pelo metodo de Laguerre o intervalo que contenha todas as raizes reais da equacao {x}^{5}-2{x}^{3}+{x}^{2}-2=0 "

Exercicio relativamente simples, mas ao fazer a aproximacao da raiz, me deparei com nosso amigo zero. Minha duvida é se, nesse caso, eu devo coloca-lo em uma classificacao de positivo ou negativo apenas para terminar a resolucao, e lembrando que eu ainda nao conheço numeros complexos, mas o enunciado pediu apenas as raizes reais.

Até este momento, o resultado bate com o gabarito, pois o intervalo é ]-2;2[. Mas, se fosse necessário, como eu deveria proceder nessa situação ?

Imagem

ps: tentei postar sem utilizar imagens externas, mas nao consegui inserir tabelas aqui. Existe algum tutorial para insercao de tabelas?
ftdk
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Set 23, 2012 09:31
Localização: Sao Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: eletrônica
Andamento: cursando

Re: [duvida] metodo de laguerre

Mensagempor MarceloFantini » Dom Set 23, 2012 13:34

Não entendo o que quer dizer exatamente, pois zero não é uma raíz deste polinômio. O que acontece é que o valor da função é negativo neste ponto. Marque apenas como raíz, não precisa classificá-lo como positivo ou negativo (mesmo porque ele é neutro).

Você poderia usar LaTeX para inserir a tabela.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [duvida] metodo de laguerre

Mensagempor ftdk » Dom Set 23, 2012 15:05

Marcelo, obrigado pela resposta e desculpe se nao fui bem claro.

De acordo com o metodo de Laguerre, ao substituirmos os valores do intervalo ]-2;2[ na função, sempre que o resultado alternar entre + e -, significa que existe uma raiz real entre esses valores, correto? Por exemplo, existe 1 raiz real no intervalo ]1;2[

A minha duvida é quando substituo -1 na funcao. O resultado de f[-1] = 0, entao nao sei se em f[-1] eu considero positivo (acarretando em 1 raiz real entre ]-2;-1[, e 1 raiz real entre ]-1;0[ ) ou negativo (nao haveria nenhuma raiz real nesses intervalos).
ftdk
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Set 23, 2012 09:31
Localização: Sao Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: eletrônica
Andamento: cursando

Re: [duvida] metodo de laguerre

Mensagempor MarceloFantini » Dom Set 23, 2012 15:39

Você está confundindo conceitos. A definição de raíz de uma função é justamente que f( \alpha) =0. Quando você substitui -1 na função você vê que f(-1)=0, logo -1 é raíz da função. Isto significa que qualquer intervalo contendo -1 fará com que a função assuma valores positivos e negativos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [duvida] metodo de laguerre

Mensagempor ftdk » Dom Set 23, 2012 18:24

Ah, então acho que tambem entendi porque não incluimos os extremos no intervalo ]-2;2[.

Agora, só por curiosidade, vou tentar calcular a menor e a maior raiz desse polinomio. Obrigado pela ajuda.
ftdk
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Set 23, 2012 09:31
Localização: Sao Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: eletrônica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.