• Anúncio Global
    Respostas
    Exibições
    Última mensagem

estudo de sinais de uma equação de 3º grau

estudo de sinais de uma equação de 3º grau

Mensagempor ygor_macabu » Ter Mai 01, 2012 02:00

Gostaria de saber como que eu posso fazer um estudos de sinais de uma equação de 3º grau.
por exemplo: sei que um equação de 1º grau é uma reta. de 2º grau é uma parabola.
isso ajuda a marca os pontos de interesse para resolver a inequação ( no meu caso)
mas cheguei em uma equação de 3º grau e não consigo resolve-la.
ygor_macabu
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 19, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e Materiais
Andamento: cursando

Re: estudo de sinais de uma equação de 3º grau

Mensagempor Guill » Ter Mai 01, 2012 09:12

Uma equação do terceiro grau é uma função polinomial com 3 raízes. É preciso encontrar as três raízes, que é o lugar onde a função toca o eixo x (pode existir duas, uma ou nenhuma raíz).

Depois disso, é muito bom esboçar o gráfico da derivada dessa função (embora não seja preciso), pois ele te garante em quais valores a função do 3º grau está crescendo e em quais ela está decrescendo. (Em valores positivos da derivada, a função está crescendo, em valores negativos, decrescendo).



Exemplo:

Seja a inequação :

x³ - 2x² - x + 1 > -1

x³ - 2x² - x + 2 > 0

x²(x - 2) - (x - 2) > 0

(x² - 1)(x - 2) > 0

(x + 1)(x - 1)(x - 2) > 0


Sabemos que as raízes são -1 ; 1 ; 2, mas não sabemos em quais intervalos a função é positiva ou negativa. Ao invéz de olhar a derivada, façamos algo mais lógico:

O primeiro dos números (seguindo a ordem do plano cartesiano) que zera a função é o x = -1. Antes dele, observamos que as funções possuíam valores negarivos, pois (x + 1) era negativo, (x - 1) também e (x - 2) também (- - - = -). Agora, depois de x = -1, teremos:

+ - - = +

Até que cheguemos em x = 1, onde a situação se torna:

+ + - = -

Até atingirmos x = 2, onde teremos:

+ + + = +



Portanto, podemos afirmar:

(-\infty ; -1) --> Negativa

(-1 ; 1) --> Positiva

(1 ; 2) ---> Negativa

(2 ; \infty) ---> Positiva



Dessa forma, fica simples definir o conjunto solução:

S = {x\in\Re | (-1 < x < 1)ou(x>2)}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.