• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fatoração de polinômios]

[fatoração de polinômios]

Mensagempor jvabatista » Qua Abr 18, 2012 01:42

Olá.

Estou com problemas para resolver isto:

\frac{8{x}^{\frac{3}{5}}-2\sqrt[3]{{x}^{2}}+{x}^{\frac{4}{5}}}{\sqrt[2]{{x}^{5}}}

**Divida, deixando aparecer somente expoentes positivos


Separei cada membro de cima com o mesmo denominador, dividi cada um dos três separadamente e encontrei isto:

\frac{8}{{x}^{\frac{3}{5}}}-\frac{2}{{x}^{\frac{11}{6}}}+\frac{1}{{x}^{\frac{17}{10}}}

Não sei como simplificar mais do que isso e a resposta no livro é 8{x}^{\frac{2}{5}}-2{x}^{\frac{7}{5}}+{x}^{\frac{3}{5}}.

Tentei resolver pelo método das chaves mas obtive o mesmo resultado. Há algum outro método para se chegar ao resultado do livro ou algo mais a simplificar de até onde calculei ?
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qua Abr 18, 2012 23:08

\frac{8x^{\frac{3}{5}} - 2\sqrt[3]{x^2} + x^{\frac{4}{5}}}{\sqrt[]{x^5}} =

\frac{8x^{\frac{3}{5}} - 2x^{\frac{2}{3}} + x^{\frac{4}{5}}}{x^{\frac{5}{2}}}} =

Aplicando MMC vamos deixar os denominadores iguais:

\frac{8x^{\frac{18}{30}} - 2x^{\frac{20}{30}} + x^{\frac{24}{30}}}{x^{\frac{75}{30}}}} =

Acho que agora vc consegue, tente!

Qualquer dúvida retorne.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 17:49

Oi, tentei resolver aplicando o MMC, da mesma forma que fiz o anterior - separei cada termo com seu denominador -, ficando:

\frac{8{x}^{\frac{18}{30}}}{{x}^{\frac{75}{30}}}-\frac{{x}^{\frac{20}{30}}}{{x}^{\frac{75}{30}}}+\frac{{x}^{\frac{24}{30}}}{{x}^{\frac{75}{30}}}.

Mas ainda continuo obtendo o mesmo resultado de anteriormente. Há outro meio de seguir a equação que não seja este que utilizei ?
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qui Abr 26, 2012 20:13

jvabatista escreveu:Oi, tentei resolver aplicando o MMC, da mesma forma que fiz o anterior - separei cada termo com seu denominador -, ficando:

\frac{8{x}^{\frac{18}{30}}}{{x}^{\frac{75}{30}}}-\frac{{x}^{\frac{20}{30}}}{{x}^{\frac{75}{30}}}+\frac{{x}^{\frac{24}{30}}}{{x}^{\frac{75}{30}}}.

Mas ainda continuo obtendo o mesmo resultado de anteriormente. Há outro meio de seguir a equação que não seja este que utilizei ?

Você esqueceu de colocar o 2 (termo negativo).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 20:52

Desculpe, é verdade. Esqueci o 2 quando digitei a expressão. Mas ela continua dando o mesmo resultado.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qui Abr 26, 2012 21:15

jvabatista escreveu:Desculpe, é verdade. Esqueci o 2 quando digitei a expressão. Mas ela continua dando o mesmo resultado.

Então vamos a ela.
\frac{8x^\frac{18}{30} - 2x^\frac{20}{30} + x^\frac{24}{30}}{x^\frac{75}{30}} =

Pelo que entendi até aqui tudo bem, certo?!

Então, coloque x^\frac{75}{30} em evidência, veja:

\frac{x^\frac{75}{30}( 8x^\frac{- 57}{30} - 2x^\frac{- 55}{30} + x^\frac{- 51}{30})}{x^\frac{75}{30}} =

8x^\frac{- 19}{10} - 2x^\frac{- 11}{6} + x^\frac{- 17}{10} =

ou

\frac{8}{x^\frac{19}{10}} - \frac{2}{x^\frac{11}{6}} + \frac{1}{x^\frac{17}{10}}

também encontrou isso?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 21:27

Sim. Então a resposta do livro tá errada mesmo né? rsrs. Muito obrigado.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Dom Abr 29, 2012 00:42

jvabatista escreveu:Sim. Então a resposta do livro tá errada mesmo né? rsrs. Muito obrigado.

De acordo!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: