• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Complexos- demonstração com conjugado.

Complexos- demonstração com conjugado.

Mensagempor emsbp » Sex Ago 03, 2012 18:10

Boa tarde. É pedido para demonstrar a seguinte igualdade: \frac{1}{{z}^{n}}= \frac{1}{conjugado de {z}^{n}}. (Peço desculpa, mas não consegui encontrar o símbolo de conjugado no editor).
Comecei por atribuir z=\rho cis\Theta, donde {z}^{n} = {\rho}^{n}cis(n\theta). Donde o seu conjugado será {\rho}^{n}cis(-n\theta). Para \frac{1}{{z}^{n}}=\frac{cis 0}{{\rho}^{n}cis(n\Theta)}=\frac{1}{{\rho}^{n}}cis(-n\Theta). Procedi do mesmo modo para o outro quociente e obtive \frac{1}{conjugado de{z}^{n}}=\frac{cis 0}{{\rho}^{n}cis(-n\Theta)}=\frac{1}{{\rho}^{n}}cis(n\Theta). No entanto, os ângulos são diferentes. O que me está a escapar?
Obrigado.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Complexos- demonstração com conjugado.

Mensagempor MarceloFantini » Sex Ago 03, 2012 18:46

Tem certeza da igualdade? Tome z=i, então \frac{1}{z^n} = \frac{1}{i^n} = \frac{1}{\overline{i^n}} = \frac{1}{(-i)^n}, que não é verdadeiro para todo n.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Complexos- demonstração com conjugado.

Mensagempor emsbp » Sex Ago 03, 2012 19:17

No manual vem tal e qual como apresentei. Também estranhei.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)