por geriane » Seg Jul 05, 2010 13:54
Determine o argumento do complexo z=
![\frac{2}{\sqrt[]{3}+i} \frac{2}{\sqrt[]{3}+i}](/latexrender/pictures/93352a533da461030a525c4395e8591e.png)
.
O resultado é

.
Desde já obrigada pela compreensão.
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
por Elcioschin » Seg Jul 05, 2010 15:45
z = 2/(V3 + i)
z = 2*(V3 - i)/(V3 + 1)*(V3 - i)
z = 2*(V3 - i)/(3 - i²)
z = 2*(V3 - i)/4
z = (V3 - i)/2
z = V3/2 - i/2 ----> cosx = + V3 , senx = - 1/2 ----> x está no 4º quadrante e equivale a um ângulo x = - 30º ou 11pi/6
z = cos(11pi/6) + sen(11pi/6)
Argumento = 11pi/6
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.