• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar de modo que:

Determinar de modo que:

Mensagempor anamendes » Sáb Jun 09, 2012 19:08

Determine k de modo que z= (1-4k)/(5) + (-2-2k)i /(5) tenha a imagem geométrica pertencente à bissetriz dos quadrantes pares.

Como resolvo? Não faço mesmo a mínima...
anamendes
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sáb Abr 28, 2012 08:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciências e tecnologias
Andamento: cursando

Re: Determinar de modo que:

Mensagempor MarceloFantini » Qua Jun 13, 2012 20:59

Isto significa que o ponto deve pertencer à bissetriz dos quadrantes pares. Essa bissetriz tem a propriedade que seu coeficiente angular vale -1, portanto

\frac{ \frac{1-4k}{5} }{ \frac{-2-2k}{5} } = -1 \rightarrow \frac{1-4k}{-2-2k} = -1

\rightarrow 1-4k = 2+2k \rightarrow 6k = -1 \rightarrow k = \frac{-1}{6}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.