• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[complexos] demonstrações

[complexos] demonstrações

Mensagempor alentejana » Ter Mai 22, 2012 16:22

Seja C o conjunto de números complexos, verifique que {\left(1-i \right)}^{7}= -8\left(1+i \right).

Já calculei de duas formas diferentes mas não consigo chegar ao resultado, pois dá-me o 8 positivo e não negativo:

{\left(1-i \right)}^{7}= \left(1-i \right)\left(1-i \right)\left(1-i \right)\left(1-i \right)\left(1-i \right)\left(1-i \right)\left(1-i \right)=
=\left(1-i-i+{-i}^{2} \right)\left(1-i-i+{-i}^{2} \right)\left(1-i-i+{-i}^{2} \right)\left(1-i \right)=
=\left(1-2i-1 \right)\left(1-2i-1 \right)\left(1-2i-1 \right)\left(1-i \right)=
=\left(-2i \right)\left(-2i \right)\left(-2i \right)\left(1-i \right)=\left(4i \right)\left(-2i+2{i}^{2} \right)=
=\left(-4 \right)\left(-2i-2 \right)=\left(-4 \right)\left(-2 \right)\left(i+1 \right)=8\left(1+i \right)

Será problema do enunciado ou eu é que estou a fazer algum erro?
alentejana
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 22, 2012 15:29
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: [complexos] demonstrações

Mensagempor alentejana » Ter Mai 22, 2012 16:40

faltou ali o parentesis no i^2:
\left(1-i-i+{\left(-i \right)}^{2} \right)
alentejana
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 22, 2012 15:29
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: [complexos] demonstrações

Mensagempor Cleyson007 » Ter Mai 22, 2012 17:33

Boa tarde Alantejana!

O procedimento que você adotou não é o ideal para resolver esse tipo de exercício. Imagine se tivessémos uma potência 35, por exemplo, você iria repetir isso 35 vezes?

Analisando sua resolução:

Repare um erro logo no início (2ª linha): (1 - i)(1 - i) --> 1 -i -i +i² = 1 - 2i + i²

Outra coisa: você postou uma segunda mensagem para informar que faltou um parêntese. Quando for assim, clique no botão editar que você consegue alterar por lá, ok?

Alantejana, tente dar sequência no exercício e comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [complexos] demonstrações

Mensagempor alentejana » Ter Mai 22, 2012 17:35

"Repare um erro logo no início (2ª linha): (1 - i)(1 - i) --> 1 -i -i +i² = 1 - 2i + i² "

Mas ao fazer \left(1-i \right)\left(1-i \right)={1}^{2}+2.1.i+{i}^{2}
isso fica na mesma 1-2i-1 que dá -2i....

Acho que não percebi...
alentejana
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 22, 2012 15:29
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: [complexos] demonstrações

Mensagempor Cleyson007 » Ter Mai 22, 2012 19:48

Boa noite Alantejana!

Vamos ao problema. Acompanhe:

{(1-i)}^{7}\Rightarrow(1-i)(1-i)(1-i)(1-i)(1-i)(1-i)(1-i)

Como você mesmo observou: (1-i)(1-i)(1-i)(1-i)=-2i

(-2i)(-2i)(-2i)(1-i)=-8(1+i)

(-4i^2)(-2i+2i^2)=-8-8i

(-4)(-2i-2)=-8-8i

8i+8=-8-8i\Rightarrow16i+16

Acredito que seja isso..

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [complexos] demonstrações

Mensagempor alentejana » Ter Mai 22, 2012 19:57

OK, tentei agora pelo método do Binómio de Newton... mas o resultado deu o mesmo. Onde estou a errar?

{\left(1-i \right)}^{7}=7C0.({1}^{7}).({-i}^{0})+7C1.({1}^{6}).({-i}^{1})+7C2.({1}^{5}).({-i}^{2})+7C3.({1}^{4}).({-i}^{3})+7C4.({1}^{3}).({-i}^{4})+7C5.({1}^{2}).({-i}^{6})+7C6.({1}^{1}).({-i}^{6})+7C7.({1}^{0}).({-i}^{7})=
=1.1.1+7.1.(-i)+21.1.(-1)+35.1.i+35.1.1+21.1.(-i)+7.1.(-1)+1.1.(-i)=1-7i-21+35i+35-21i-7+i=(1-21+35-7)+(-7+35-21+1)i=8(1+i)

Novamente o resultado é o mesmo. Mas eu estou a fazer:
(-i)^0=1
(-i)^1=(-1)^1 x i^1= -i
(-i)^2=(-1)^2 x i^2= -1
(-i)^3=(-1)^3 x i^3= (-1) x (-i)=i
(-i)^4=(-i)^0= 1
(-i)^5=(-i)^1= -i
(-i)^6=(-i)^2= -1
(-i)^7=(-i)^3= -i

Será que estou a fazer mal por ser (-i)^n em vez de i^n?
alentejana
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 22, 2012 15:29
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: [complexos] demonstrações

Mensagempor alentejana » Ter Mai 22, 2012 20:16

Obrigada Cleyson007

O que eu acho é que é mesmo erro do enunciado, pois ele pede para demonstrar a igualdade e 8(1+i) não é igual a -8(1+1). Eu pensei foi que me tivesse enganado nalgum calculo. Agora vou tentar resolver o outro exercicio pelo binomio de newton... Já vai meio caminho andado :)
Obrigada
alentejana
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 22, 2012 15:29
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: [complexos] demonstrações

Mensagempor joaofonseca » Ter Mai 22, 2012 20:25

Eu cheguei ao mesmo resultado por duas formas diferentes:

1) Lei Binomial:

Sabemos que \space 1^n=1 \space, para qualquer \space n \in \mathbb{Z}. Sabemos também que -i=i^3. Podemos então escrever:

(1-i)^7= \binom{7}{0}(i^3)^0+\binom{7}{1}(i^3)^1+\binom{7}{2}(i^3)^2+\binom{7}{3}(i^3)^3+\binom{7}{4}(i^3)^4+

\binom{7}{5}(i^3)^5+\binom{7}{6}(i^3)^6+\binom{7}{7}(i^3)^7

(1-i)^7= 1-7i-21+35i+35-21i-7+i=8+8i

2)Forma Trigonometrica:

Seja \space w=1-i \space .Então \space |w|=\sqrt{2} \space e \space arg(w)=-\frac{\pi}{4}.
Logo \space w^7= \sqrt{2^7} cis \left(-\frac{7 \pi}{4} \right ).

Fica:

\sqrt{2^7} \left ( cos(\frac{\pi}{4})+sen(\frac{\pi}{4})i \right)=2^3\sqrt{2} \left (\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i \right)=8+8i
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.