• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duas questões de complexos

Duas questões de complexos

Mensagempor Joseaugusto » Seg Abr 09, 2012 10:43

Olá amigos, travei com esses dois exercicios de complexos, e não encontro resolução na internet. Agradeceria a quem me indicar o caminho a ser seguido para resolve-los


(UFU) A soma das raizes distintas da equação z² + 2R(z) + 1 = 0, onde z é um numero complexo e R(z) denota a parte real de Z é igual a:
R: -1

(ITA) Sejam x e y numeros reais, com x =/= 0 (x diferente de zero), satisfazendo (x + iy)² = (x +y)i. Então:
R: x é raiz da equação x³ + 3x² + 2x - 6
Joseaugusto
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 06, 2012 11:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Duas questões de complexos

Mensagempor fraol » Seg Abr 09, 2012 18:46

(1)

z^2 + 2Re(z) + 1 = 0

Seja z = a + bi, com Re(z) = a, então

z^2 + 2Re(z) + 1 = 0 \iff z^2 + 2a + 1 = 0 \iff z^2 = -(2a + 1)

Note que z^2 = a^2 - b^2 + 2abi = -(2a + 1) não possui parte imaginária donde concluímos que b = 0.

Assim

a^2 - b^2 + 2abi + 2a + 1 = 0 => a^2 + 2a + 1 = 0, de onde sai a = -1 ( raiz dupla ).

Portanto a soma das raízes distintas é igual a -1.

(2)

(x + iy)^2 = (x + y)i

x^2 - y^2 + 2xyi = (x + y)i , note que no segundo membro não temos parte real, então

x^2 - y^2 = 0 => x = y.

ou

2xyi = (x + y)i => 2xy = x + y \iff 2x^2 = 2x \iff

x = y = 0 ou x = y = 1.

Comox \ne 0 entãox = 1 (que é a raiz real do polinômio dado).

(Obs. o ideal é que se crie um tópico para cada questão no forum.)

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Duas questões de complexos

Mensagempor Joseaugusto » Ter Abr 10, 2012 09:47

Sou implicado com complexos por causa disso, os exercícios são fáceis... depois que voce aprende como faze-los *-)

obrigado pela ajuda fraol, coloquei as duas questões em um unico post pra não encher demais o forum, na próxima eu faço certo.
Joseaugusto
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 06, 2012 11:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Duas questões de complexos

Mensagempor fraol » Ter Abr 10, 2012 10:35

Há matemáticos que dizem que os complexos só o são no nome. Valeu.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}