• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de coeficientes

Soma de coeficientes

Mensagempor Jonatan » Qua Jun 16, 2010 15:22

No desenvolvimento de {(x+2)}^{n} há 10 termos. Qual a soma dos coeficientes destes termos?


Eu tenho esta questão resolvida aqui, entretanto, não estou conseguindo interpretar sua resolução... o que sugere é o seguinte:

Foi feito o desenvolvimento de {(x+2)}^{9}, pois como há 10 termos, significa que o expoente do binômio todo é 9... Feito o desenvolvimento, atribui-se 1 ao valor de x (x = 1) e ficou assim:


{(1+2)}^{9} = {(3)}^{9}.
Só que eu não entendi o motivo de jogar o 1 no lugar de x... Alguém pode me ajudar? Grato.
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Soma de coeficientes

Mensagempor Lucio Carvalho » Qua Jun 16, 2010 16:29

Olá Jonatan,
Primeiramente, fazemos o desenvolvimento de {(x+2)}^{9}. Obtemos:

{(x+2)}^{9}=9C0.{x}^{9}+9C1.{x}^{8}.2+9C2.{x}^{7}.{2}^{2}+9C3.{x}^{6}.{2}^{3}+9C4.{x}^{5}.{2}^{4}+9C5.{x}^{4}.{2}^{5}+9C6.{x}^{3}.{2}^{6}+9C7.{x}^{2}.{2}^{7}+9C8.x.{2}^{8}+9C9.{2}^{9}

Como podemos verificar, a soma dos coeficientes dos 10 termos é:

9C0+9C1.2+9C2.{2}^{2}+9C3.{2}^{3}+9C4.{2}^{4}+9C5.{2}^{5}+9C6.{2}^{6}+9C7.{2}^{7}+9C8.{2}^{8}+9C9.{2}^{9}

=1+9.2+36.4+84.8+126.16+126.32+84.64+36.128+9.256+512=1+18+144+672+2016+4032+5376+4608+2304+512=19683

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 120
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Soma de coeficientes

Mensagempor Jonatan » Qua Jun 16, 2010 17:03

Olá, Lúcio. Entendi certinho o que você fez, me ajudou muito. Entretanto, teria uma forma mais rápida de fazer este exercício, visto que ''9'' já é um expoente considerável de desenvolvê-lo. Digo isto por que essas questões são de vestibulares, e tais concursos exigem cada vez mais rapidez na resolução das questões. Mesmo assim, muito obrigado pela atenção em resolver o exercício para mim.
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Soma de coeficientes

Mensagempor MarceloFantini » Qua Jun 16, 2010 21:03

Um exemplo simples para ilustrar o porque que x = 1 ajuda nestas situações: considere o polinômio do segundo grau ax^2 +bx +c. Imagine que eu queira a soma dos coeficientes. Para x = 1, temos: a1^2 + b1 + c = a + b + c, que é a soma dos coeficientes.Ao substituir x por 1, você está multiplicando todos os coeficientes por um número neutro, que não altera o produto, sobrando apenas os coeficientes.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em matemática pura
Andamento: cursando

Re: Soma de coeficientes

Mensagempor Jonatan » Qua Jun 16, 2010 21:13

É verdade, Fantini... Lendo o que você explicou dá para entender e agora mesmo eu fiz mais exercícios e igualei os coeficientes a 1 e deu tudo certo :)
Essa propriedade de fazer x = 1 para achar a soma dos coeficientes me recorda de alguma coisa das aulas de polinômios, mas não estou certo disto nem cheguei no assunto ainda, estudarei polinômios um pouco mais pra frente! Muito obrigado, me cadastrei no fórum hoje mesmo e já aprendi muito em um só dia... é ótimo saber que existem pessoas prestativas e atenciosas colaborando com o pessoal que estuda sozinho em casa, que é o meu caso. Muito obrigado, mais uma vez!
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59