por marquessbr » Qua Abr 04, 2012 22:04
tem-se uma moeda hakeada com a probabilidade de 0,6 de dar cara e 0,4 de dar coroa, se acrescentamos uma moeda honesta (probabilidade igual de dar cara ou coroa, ou seja, 0,5 para cada evento), ficamos assim com duas moedas, uma hakeada e outra honesta; pois bem, sabemos que selecionando aleatoriamente uma dessas moedas, isso nos daria a probabilidade de 0,5 de escolhermos uma ou outra, dai lançamos a moeda escolhida duas vezes e nas duas vezes dá cara.
Qual seria a probabilidade de termos pegado a moeda "hakeada"?
alguem pode ajudar com esse problema?
grato
-
marquessbr
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Abr 04, 2012 06:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Robotica
- Andamento: cursando
por marquessbr » Qui Abr 05, 2012 09:19
Lucio Carvalho escreveu:Olá marquessbr,
Segue em anexo uma possível ajuda. Penso que o problema diz respeito à probabilidade condicionada e à Regra de Bayes.
Espero que compreendas a apresentação. Evitei as fórmulas!
Adeus
Meu amigo, você tem um lugar reservado, onde quer que Deus tenha guardado lugar para pessoas que ajudam realmente, pode acreditar.
Eu realmente tenho um pouco de dificuldade para esses calculos, sempre preciso de um pouco mais de tempo para assimilar, mas o curso online que estamos fazendo é muito rápido e já tamos no exame final dai ficou realmente a dever um melhor entendimento sobre o tema, muito obrigado.
E sem mudar de pau para cassete, trata-se de um problema muito bem elaborado, concordas?

valeus!

luz e paz!

-
marquessbr
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Abr 04, 2012 06:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Robotica
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Moedas
por admin » Sex Jul 20, 2007 15:08
- 13 Respostas
- 9823 Exibições
- Última mensagem por Neperiano

Qua Out 29, 2008 20:59
Desafios Fáceis
-
- Moedas
por andersonsouza » Seg Fev 11, 2013 16:16
- 3 Respostas
- 2069 Exibições
- Última mensagem por young_jedi

Ter Fev 12, 2013 11:15
Aritmética
-
- Quantas moedas no cofre?
por roberto Marinho » Sex Out 16, 2009 04:38
- 3 Respostas
- 3870 Exibições
- Última mensagem por Molina

Seg Out 19, 2009 14:10
Sistemas de Equações
-
- [Lançamento de moedas] Probabilidade
por analuzia » Qua Nov 07, 2012 16:33
- 2 Respostas
- 2897 Exibições
- Última mensagem por analuzia

Qua Nov 07, 2012 17:04
Probabilidade
-
- [Probabilidade de esferas] condicionadas com moedas
por Thebigspire » Qua Set 24, 2014 01:31
- 1 Respostas
- 3887 Exibições
- Última mensagem por Thebigspire

Sex Out 03, 2014 00:40
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 12:41
pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.
78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?
Assunto:
dúvida em uma questão em regra de 3!
Autor:
Douglasm - Qui Jul 01, 2010 13:16
Observe o raciocínio:
10 pessoas - 9 dias - 135 toneladas
1 pessoa - 9 dias - 13,5 toneladas
1 pessoa - 1 dia - 1,5 toneladas
40 pessoas - 1 dia - 60 toneladas
40 pessoas - 30 dias - 1800 toneladas
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:18
pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:21
leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
valeu meu camarada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.