• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatorial de 0

Fatorial de 0

Mensagempor Neperiano » Qua Set 14, 2011 19:45

Ola

Pessoal isso foi uma duvida de um colega meu de aula, mas a professora não soube tambem, então quero ver quem mata essa

Porque o fatorial de 0 é 1

Não basta dizer a porque foi convencionado assim ou explicações de lógica, quero saber através de calculos matemáticos, ou seja

Prove que fatorial de 0 é 1

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Fatorial de 0

Mensagempor MarceloFantini » Qua Set 14, 2011 20:27

Isso é uma definição, não pode ser provado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatorial de 0

Mensagempor Neperiano » Qui Set 15, 2011 11:33

Ola

Era bem isso que eu não queria ouvir

Desculpe marcelofantini, mas nada na natureza não pode ser provado, tu não pode dizer isso, porque se isso é uma definição como aplica-la, tenque ter alguma explicação, o fato dessa resposta é que você tambem não sabe, xd

Ja ouvi respostas do tipo, ah pense que tem 5 pessoas numa fila, quantas maneiras de organizar a fila 5!, e se tem 0 pessoas, tem 1 maneira de organizar a fila, ou seja sem ninguem, mas tenque haver uma definição sim

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Fatorial de 0

Mensagempor MarceloFantini » Qui Set 15, 2011 17:03

Primeiramente, seria interessante que você leia este artigo que fala dos teoremas da incompletude de Godel, que diz que num sistema de axiomas consistente existem afirmações que são verdadeiras mas não podem ser provadas, ou seja, o sistema não é completo. Da mesma forma, se um sistema é completo existe alguma inconsistência nele, há algum problema em algum lugar. Isso desmente que "nada na natureza não pode ser provado".

Sobre a definição, é bem simples. Vou pegar outro exemplo, porque dizemos que quando uma combinação linear de vetores a_1x_1 + a_2x_2 + \cdots + a_nx_n =0 é linearmente independente se todos os a_i = 0, para i=1, \, \ldots, \, n? Resposta: pois isto é uma definição. Aliás, nisto mesmo já estamos usando outra definição: o que é uma combinação linear de vetores? Resposta: a_1x_1 + a_2x_2 + \cdots + a_nx_n. Porque é assim? Resposta: porque é uma definição. Definições são feitas por várias razões. Primeira: é conveniente. Segunda: costuma-se definir a mais natural e prática.

A definição de que 0!=1 é conveniente em vários aspectos: primeiro, isto mantém a definição de fatorial como uma função que leva em um número inteiro; segundo, é um número simples de se trabalhar, não altera o produto; terceiro, com isso incluímos no fatorial o caso em que o zero aparece. Da mesma forma que um fatorial é definido como uma função f: \mathbb{N} \to \mathbb{N} \, | \, n \mapsto n!, com essa definição nós estendemos a função para quando n=0 (que nem sempre é incluído nos naturais).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatorial de 0

Mensagempor Claudin » Qui Set 15, 2011 17:48

Em relação a mensagem abaixo:
Correto, então resumindo, as demonstrações de definição o aluno tem que "aceitar" e o que pode ser provado são as propriedades e as fórmulas.
Desculpe-me pelo equívoco.
Editado pela última vez por Claudin em Qui Set 15, 2011 17:56, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 908
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fatorial de 0

Mensagempor MarceloFantini » Qui Set 15, 2011 17:52

Está equivocado, pois definição não se demonstra, aceita-se e procura-se compreender o significado e as razões por trás dela.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatorial de 0

Mensagempor LuizAquino » Qui Set 15, 2011 18:51

Olá Pessoal,

Primeiro, vamos esclarecer alguns conceitos. Como o colega Fantini lembrou, não provamos definições.

Vejamos um exemplo. Uma circunferência é definida como "o conjunto de todos os pontos do plano que são equidistantes de um ponto fixo (chamado de centro)".

Já que isso é a definição de circunferência, não faz sentido dizermos: "Prove que a circunferência é o conjunto de todos pontos do plano que são equidistantes de um ponto fixo (chamado de centro)".

Esclarecido essa parte, vejamos agora a questão particular de dizer que 0! tem valor igual a 1.

Como bem sabemos, nós definimos o fatorial do número inteiro (positivo) n, como sendo o produto entre todos os inteiros de 1 até n. Nós representamos essa operação por n!. Ou seja, colocamos o símbolo de exclamação ("!") ao lado do número. Como exemplo, temos que 5! = 5\cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120 . Em particular, notamos também que 1! = 1.

Manipulando agora a definição de fatorial, podemos escrever que n(n-1)! = n!. Vale destacar que no primeiro membro o fatorial está aplicado apenas no número (n-1) e não mais no número n.

Vamos analisar o que acontece com essa identidade quando n = 1. Nesse caso ficamos com 1(1 - 1)! = 1!. Nós já sabíamos que 1! = 1. Além disso, se multiplicamos 1 pelo número (1 - 1)!, então temos como resultado o próprio número (1 - 1)!. Isso significa que podemos escrever (1 - 1)! = 1. Lembrando que nós partimos apenas da definição de fatorial, para que essa definição seja condizente precisamos então ter que 0! = 1.

Por outro lado, infelizmente notamos que 0! não pode ser calculado diretamente da definição de fatorial, pois o produto entre todos os inteiros de 1 até 0 é zero. Dessa maneria, a argumentação acima serve apenas para ilustrar a necessidade de atribuirmos 1 ao valor de 0!, pois caso contrário a definição de fatorial não seria condizente. Isso porque se 0! tivesse outro valor diferente de 1, digamos c, então da identidade n(n-1)! = n! chegaríamos que 1! = c, mas sabemos que 1! é 1 e portanto não podemos ter 1! = c.

A partir disso, precisamos então definir que 0! = 1.

Deixando as argumentações um pouco mais intuitivas. Vamos analisar que a necessidade de termos 0! = 1 é razoável. Considere que em um grupo de 4 pessoas, cada uma deva apertar a mão das outras apenas uma vez. Teremos ao todo \frac{4 \cdot 3}{2} = \frac{4!}{2!(4-2)!} = 6 apertos de mão distintos. De modo geral, se temos n pessoas teremos \frac{n!}{2!(n-2)!} apertos de mão distintos.

Agora imagine que há apenas 2 pessoas. Claramente teremos apenas 1 aperto de mão. Ou seja, precisamos ter 1 = \frac{2!}{2!(2-2)!} . Ou ainda, podemos escrever que devemos ter 1 = \frac{1}{0!} . O único valor para o número 0! que torna essa equação válida é 1. Mais uma vez percebemos a necessidade de termos definido que 0! = 1.
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2650
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Fatorial de 0

Mensagempor Neperiano » Qui Set 15, 2011 19:16

Ola

Essa resposta do luizaquino ja explica um pouco melhor, se não tem como provar, como chegaram a essa definição, e sempre há um motivo para isso

É um belo trabalho de conclusão esse tema

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Fatorial de 0

Mensagempor LuizAquino » Qui Set 15, 2011 20:54

Neperiano escreveu:É um belo trabalho de conclusão esse tema


Bem, com certeza é um tema curioso. Mas render um trabalho de conclusão de curso eu acho um pouco improvável.
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2650
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Fatorial de 0

Mensagempor Neperiano » Sex Set 16, 2011 15:18

Ola

Olha o que um colega meu fez quando perguntei pra ele isso

n = n!/(n-1)
1=1!/0
0=1!/1
1!=0

Ele conseguiu provar desse jeito, claro que se tu usa 0 no n vai dar 0=-1, ou seja isso não vale pra tudo

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Fatorial de 0

Mensagempor MarceloFantini » Sex Set 16, 2011 15:22

Você quis dizer n = \frac{n!}{(n-1)!}, mas para isso (n-1)! \neq 0, e se você não sabe o valor de 0! esse resultado é inválido para n=1. Já que você até agora não acreditou que isto é uma definição, então use que a função fatorial generalizada é a função gama:

\Gamma (x) = \int_0^{\infty} t^{x-1} e^{-t} \, \textrm{d}t

Quando x=0 temos \Gamma(0) = 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatorial de 0

Mensagempor Neperiano » Sex Set 16, 2011 15:30

Ola

Não não

Não tem o fatorial embaixo marcelo

Mas como disse isso foi uma maneira qualquer, o objetivo era provar, e não ser lógico

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Fatorial de 0

Mensagempor LuizAquino » Sex Set 16, 2011 15:33

Neperiano escreveu:Olha o que um colega meu fez quando perguntei pra ele isso

n = n!/(n-1)


Você deve querer dizer n = n!/(n-1)!. Isso é obtido da própria definição de n!. É apenas uma outra forma de ver a identidade n(n-1)! = n! que indiquei anteriormente. Basta dividir toda a equação por (n-1)! e teremos n = n!/(n-1)!.


MarceloFantini escreveu:Você quis dizer n = \frac{n!}{(n-1)!}, mas para isso (n-1)! \neq 0, e se você não sabe o valor de 0! esse resultado é inválido para n=1

Veja que não há inconsistência. Para n = 1, temos que (n-1)! é o mesmo que 0!, que por enquanto é um número que desconhecemos. Não necessariamente ele é zero, e portanto a divisão pode estar bem definida. A ideia por traz da argumentação é que conhecemos o valor de 1!, que é 1. Sendo assim, a equação fica algo do tipo 1 = \frac{1}{0!} . Ora, mas para essa equação ser válida só há um número que podemos atribuir para 0!, que é 1. Ou seja, precisamos ter (definir) 0! = 1.

Neperiano escreveu:Ele conseguiu provar desse jeito

Apenas frisando, isso não é uma prova de que 0! = 1. Assim como as argumentações que indiquei antes, isso serve apenas para ilustrar a necessidade de atribuirmos 1 ao valor de 0!, ou seja, a necessidade de definirmos que 0! = 1. Lembre-se sempre que esse resultado não pode ser obtido diretamente da definição de fatorial.

Como argumentei na mensagem anterior, a definição de que 0! = 1 surge da necessidade de deixar a própria definição de fatorial condizente.
Editado pela última vez por LuizAquino em Sex Set 16, 2011 15:39, em um total de 1 vez.
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2650
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Fatorial de 0

Mensagempor Neperiano » Sex Set 16, 2011 15:38

Ola

Novamente, não é Fatorial embaixo, pode ser que a definição seja isso, mas ele não colocou ela embaixo, porque olha o que eu fiz antes
Neperiano escreveu:Ola

Olha o que um colega meu fez quando perguntei pra ele isso

n = n!/(n-1)
1=1!/0
0=1!/1
1!=0

Ele conseguiu provar desse jeito, claro que se tu usa 0 no n vai dar 0=-1, ou seja isso não vale pra tudo

Atenciosamente


Não tem o fatorial embaixo, é assim que ele fez

E eu não falei que estava certo ou errado, só disse que ele fez assim

Atencisosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Fatorial de 0

Mensagempor LuizAquino » Sex Set 16, 2011 15:42

Neperiano escreveu:(...) Novamente, não é Fatorial embaixo, pode ser que a definição seja isso, mas ele não colocou ela embaixo (...)

Se ele não colocou o símbolo de fatorial, então a argumentação dele está inválida. Note que o valor de \frac{n!}{n-1} seria diferente de n. Faça um teste. Escolha, por exemplo, n = 4 e faça os cálculos.
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2650
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Fatorial de 0

Mensagempor MarceloFantini » Sex Set 16, 2011 15:45

Então vamos esclarecer alguns fatos sobre a tentativa de seu amigo: primeiro, ele não provou nada; segundo, a relação está errada, pois tome n=5, teremos n = \frac{n!}{n-1} = \frac{5!}{5-1} = \frac{120}{4} = 30 \neq 5. E novamente você não conseguirá provar pois isto é uma definição, e qualquer tentativa será na verdade apenas uma motivação para a definição.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatorial de 0

Mensagempor Neperiano » Sex Set 16, 2011 15:48

Ola

Mas o que eu falei, eu disse que só dava para 0, quanto ao fatorial embaixo, eu coloquei errado ali antes

Era pra ter embaixo sim

Ficaria

n = n!/(n-1)!
1=1!/0!
0!=1

Mas que seja, só disse que deu assim, não falei que tava certo

Tomara que agora esse topico pare
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.