por Jonatan » Qua Jul 07, 2010 21:57
Em uma cidade com n + 1 habitantes, n

, uma pessoa passa uma nota de R$10,00 a uma segunda pessoa como troco de uma compra, esta segunda pessoa por sua vez passa esta mesma nota a uma terceira pessoa e assim sucessivamente. Determine a probabilidade de esta nota ser passada m vezes, m

,

, sem retornar a primeira pessoa.
Gabarito:

Pessoal, não faço nem ideia de como faz essa questão. Alguém pode resolver e explicar para mim? Obrigado desde já.
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Douglasm » Qua Jul 07, 2010 23:54
Bom, é simples, veja só:
O primeiro a passar a nota, passa esta para um dos n habitantes restantes, que por sua vez, passa a nota para um dos (n-1) habitantes restantes. Como a única condição é que a nota não volte a PRIMEIRA pessoa, o terceiro indivíduo pode passar a nota para (n-1) habitantes (ele não pode passar para o primeiro, nem para si mesmo), assim como todos os outros depois dele. Como são feitas m passagens, o número de casos favoráveis que nós temos é:

Se excluírmos a condição inicial, cada um dos habitantes poderá passar a nota para os outros n habitantes restantes. Sendo assim, o número de casos totais é:

Como a probabilidade é definida como o número de casos favoráveis sobre o número de casos possíveis, ela é:

-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10342 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- [Dúvida]Um desafio que envolve probabilidade
por Gabi Biel » Qui Out 17, 2013 20:37
- 5 Respostas
- 3826 Exibições
- Última mensagem por temujin

Sáb Out 19, 2013 21:05
Probabilidade
-
- [DESAFIO DE PROBABILIDADE 2] Energia de uma feixe
por PTuga » Sáb Out 26, 2013 18:16
- 0 Respostas
- 1413 Exibições
- Última mensagem por PTuga

Sáb Out 26, 2013 18:16
Probabilidade
-
- [DESAFIO DE PROBABILIDADE] Tempo de espera na urgência
por PTuga » Sáb Out 26, 2013 18:11
- 0 Respostas
- 1242 Exibições
- Última mensagem por PTuga

Sáb Out 26, 2013 18:11
Probabilidade
-
- Desafio
por Guarinense » Sex Nov 10, 2017 22:25
- 0 Respostas
- 5652 Exibições
- Última mensagem por Guarinense

Sex Nov 10, 2017 22:25
Teoria dos Números
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.