por yonara » Ter Jan 19, 2010 16:13
Olá. O meu problema é o seguinte:
A probabilidade de que você resolva corretamente a 1ª questão de uma prova é 1/3 e de que seu colega resolva corretamente é 2/5, sendo que ambos tentam, sozinhos, resolvê-la. Considere o experimento em que se verifica se a questão foi resolvida corretamente ou não pelos dois.
c) qual a probabilidade de pelo menos um resolver a questão corretamente?
Resp: 0,6
___________________________________________________________________
Eu tentei somando as probabilidades de "eu OU o colega" resolver a questão. E depois de "eu E o colega" resolver a questão, já que pede para pelo menos um resolver a questão. E no final multipliquei a probabilidade desses dois eventos, mas não consegui achar o resultado...
-
yonara
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Jun 30, 2009 18:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: medicina veterinária
- Andamento: cursando
por MarceloFantini » Qua Jan 20, 2010 11:28
Bom dia Yonara!
Na situação dada, você concorda que apenas existem quatro casos possíveis:
- A
acerte a questão e B
erre;
- A
acerte a questão e B
acerte também;
- A
erre a questão e B
acerte;
- A
erre e B também
erre.
Portanto, você concorda que a probabilidade de que
pelo menos um acerte é a probabilidade de todos os casos menos o que todos erram? Logo:





Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por yonara » Qui Jan 21, 2010 00:44
eu entendi bem! muito obrigada.

-
yonara
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Jun 30, 2009 18:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: medicina veterinária
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probabilidade simples
por tiagofe » Qua Abr 20, 2011 07:46
- 3 Respostas
- 4537 Exibições
- Última mensagem por tiagofe

Sáb Abr 23, 2011 09:50
Estatística
-
- probabilidade simples
por ezidia51 » Qui Jun 28, 2018 19:54
- 0 Respostas
- 5704 Exibições
- Última mensagem por ezidia51

Qui Jun 28, 2018 19:54
Probabilidade
-
- PROBABILIDADE SIMPLES
por gabrielpacito » Ter Mar 06, 2018 01:52
- 1 Respostas
- 6584 Exibições
- Última mensagem por Gebe

Ter Mar 06, 2018 02:51
Probabilidade
-
- PROBABILIDADE SIMPLES
por gabrielpacito » Ter Mar 06, 2018 01:50
- 1 Respostas
- 5587 Exibições
- Última mensagem por Gebe

Ter Mar 06, 2018 02:30
Probabilidade
-
- PROBABILIDADE SIMPLES
por gabrielpacito » Ter Mar 06, 2018 01:49
- 0 Respostas
- 4158 Exibições
- Última mensagem por gabrielpacito

Ter Mar 06, 2018 01:49
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.