• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema das moedas

problema das moedas

Mensagempor marquessbr » Qua Abr 04, 2012 22:04

tem-se uma moeda hakeada com a probabilidade de 0,6 de dar cara e 0,4 de dar coroa, se acrescentamos uma moeda honesta (probabilidade igual de dar cara ou coroa, ou seja, 0,5 para cada evento), ficamos assim com duas moedas, uma hakeada e outra honesta; pois bem, sabemos que selecionando aleatoriamente uma dessas moedas, isso nos daria a probabilidade de 0,5 de escolhermos uma ou outra, dai lançamos a moeda escolhida duas vezes e nas duas vezes dá cara.
Qual seria a probabilidade de termos pegado a moeda "hakeada"?

alguem pode ajudar com esse problema?

grato
marquessbr
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 04, 2012 06:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Robotica
Andamento: cursando

Re: problema das moedas

Mensagempor Lucio Carvalho » Qui Abr 05, 2012 05:28

Olá marquessbr,
Segue em anexo uma possível ajuda. Penso que o problema diz respeito à probabilidade condicionada e à Regra de Bayes.
Espero que compreendas a apresentação. Evitei as fórmulas!
Adeus
Anexos
Prob.2.PNG
Prob.1.PNG
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: problema das moedas

Mensagempor marquessbr » Qui Abr 05, 2012 09:19

Lucio Carvalho escreveu:Olá marquessbr,
Segue em anexo uma possível ajuda. Penso que o problema diz respeito à probabilidade condicionada e à Regra de Bayes.
Espero que compreendas a apresentação. Evitei as fórmulas!
Adeus


Meu amigo, você tem um lugar reservado, onde quer que Deus tenha guardado lugar para pessoas que ajudam realmente, pode acreditar.
Eu realmente tenho um pouco de dificuldade para esses calculos, sempre preciso de um pouco mais de tempo para assimilar, mas o curso online que estamos fazendo é muito rápido e já tamos no exame final dai ficou realmente a dever um melhor entendimento sobre o tema, muito obrigado.
E sem mudar de pau para cassete, trata-se de um problema muito bem elaborado, concordas?

:y: valeus! :-D

:y: luz e paz! :y:
marquessbr
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 04, 2012 06:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Robotica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}