• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Compreender Resultado de Inequação

Compreender Resultado de Inequação

Mensagempor johnlaw » Dom Mar 20, 2011 17:53

Olá pessoal,

Resolvi a seguinte inequação:

x^2 -3x + 2>0 e obtive os dois resultados:

x1 = 2
x2 = 1

1 - x -2x^2 , essa com:

x1 = -1
x2 = 1/2

Mas não compreendo o que isso significa! Como fica esses intervalos na reta dos reais ?

Valeu!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Compreender Resultado de Inequação

Mensagempor LuizAquino » Dom Mar 20, 2011 18:35

Ao invés de simplesmente responder o exercício para você eu vou lhe indicar um lugar onde você pode aprender a fazê-lo sozinho.

Acesse o seguinte canal no YouTube:
http://www.youtube.com/nerckie

Você irá encontrar diversas aulas de Matemática com os conteúdos do Ensino Fundamental e Médio. Inclusive, aulas sobre inequações.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Compreender Resultado de Inequação

Mensagempor Dan » Dom Mar 20, 2011 18:59

Se a inequação deve ser maior que zero, então os possíveis valores que o x assume devem ser valores que tornem o resultado da equação maior que zero.

Você precisa analisar os gráficos das equações para chegar a essa conclusão:

Para a primeira equação teremos:

Imagem

Perceba que para valores entre 1 e 2 o resultado y é negativo. Quando for igual a 1 ou 2 o resultado é zero. Portanto, devem ser considerados apenas os valores menores que 1 ou maiores que 2 para que o resultado da equação seja maior que zero, e portanto positivo.

Para a segunda equação temos:

Imagem

Ou seja, o resultado y da equação só será positivo para valores entre -1 e 1/2.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Compreender Resultado de Inequação

Mensagempor johnlaw » Dom Mar 20, 2011 19:59

Luiz Aquino, obrigado pela dica, vou verificar os vídeos.


Dan, compreendi, muito obrigado. Mas é possível eu verificar essas condições sem fazer o gráfico ? Somente olhando para a primeira equação por exemplo, como eu concluiria que o conjunto solução está de infinito até 1 (intervalo aberto) e de 2 (intervalo aberto) até infinito ?

Muito Obrigado!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Compreender Resultado de Inequação

Mensagempor Dan » Dom Mar 20, 2011 20:07

Só uma correção: formalmente é um intervalo aberto de menos infinito até 1. E aberto em 2 até mais infinito.

Não precisa fazer o gráfico. Basta observa o sinal do {x}^{2} (se for positivo a concavidade da parábola é para cima e se for negativo a concavidade é para baixo). A partir disso você só precisa calcular as raízes e imaginar essa parábola cortando o eixo x nessas raízes. Lembrando que algumas parábolas não cortam o eixo x.

Um esboço sempre facilita essa determinação, mas se você conseguir imaginar sem se confundir, ok.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.