Olá, tudo bem?
Gostaria de saber se o modo que eu utilizei para resolver esse sistema linear está correto. Desde já agradeço, que Deus lhe abençoe.
O sistema é o seguinte:
2x-y+z=4 I
x+2y+z=1 II
x+y+2z=3 III
Da I com a II: Adicionei -2 a II equação para cortar o x, obtendo a equação: -5y-z=2 IV
Da I com a III: Em seguida adicionei -2 a III para cortar o x, obtendo a equação: -3y-3z=-2 IV
Da IV com a V: Adicionei 3 a IV equação para cortar o z, obtendo y= -2/9.
Substitui o valor de y na IV equação achando z= -28/9.
Substitui os valores de z e y na I equação, obtendo x= 31/9.
S:(31/9,-2/9,-28/9)



os dois membros da equação IV e somá-la com a equação V, assim poderá obter
pois
.



, o sistema tem solução única
, sendo:


é o determinante da matriz obtida a partir da matriz dos coeficientes, substituindo-se a i-ésima coluna pela coluna dos termos independentes das equações do sistema.
(então, o sistema possui solução única)






![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.