• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inteiro Estritamente Positivo

Inteiro Estritamente Positivo

Mensagempor gustavowelp » Dom Jun 27, 2010 22:18

Caros amigos:

Surgiu uma questão meio "estranha", a qual não entendi o que se pede:

Segue o enunciado:

Usando o fato de que, para qualquer n inteiro estritamente positivo, \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n.(n+1)} , é possível afirmar que o valor correto de \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + ... + \frac{1}{99.(99+1)} é:

A alternativa correta é \frac{99}{100}

Não entendi a Progressão (se é que se trata de uma Progressão...)

Obrigado!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Inteiro Estritamente Positivo

Mensagempor Molina » Dom Jun 27, 2010 23:55

Boa noite.

Entendi a lógica desse problema. Vamos ver se eu consigo passar o meu entendimento.

\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + ... + \frac{1}{99.(99+1)}

De acordo com o enunciado, posso escrever \frac{1}{2} como sendo \frac{1}{1}-\frac{1}{1+1}=\frac{1}{1}-\frac{1}{2}

Posso escrever também \frac{1}{6} como sendo \frac{1}{2}-\frac{1}{2+1}=\frac{1}{2}-\frac{1}{3}

Posso escrever \frac{1}{12} como \frac{1}{3}-\frac{1}{3+1}=\frac{1}{3}-\frac{1}{4}

E assim por diante. Até chegar em \frac{1}{99*(99+1)}=\frac{1}{99}-\frac{1}{99+1}=\frac{1}{99}-\frac{1}{100}


Então reescrevendo esta soma \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + ... + \frac{1}{99.(99+1)} e substituindo os valores encontrados, temos que:

\frac{1}{1}-\frac{1}{2} + \frac{1}{2}-\frac{1}{3} + \frac{1}{3}-\frac{1}{4} + ... + \frac{1}{99}-\frac{1}{100}

Mas perceba que os termos vão se anulando, como por exemplo -\frac{1}{2} + \frac{1}{2}. E você perceberá que ficará apenas o primeiro e o último termo, que não serão eliminados:

\frac{1}{1} + 0 + 0 + 0 + ... + 0 - \frac{1}{100} \Rightarrow \frac{1}{1} - \frac{1}{100} = \frac{99}{100}


Espero ter sido claro.


Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Inteiro Estritamente Positivo

Mensagempor gustavowelp » Seg Jun 28, 2010 07:01

Meu jovem, tu és o cara hein.

Sabe muito!!!

Muitíssimo obrigado Molina!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}