por Questioner » Dom Mai 16, 2010 17:13
Olá,
Estou com uma dificuldade na seguinte desigualdade (muito tempo sem fazer exercícios dessa forma). Será que dá para dar uma luz?

Eu consegui fazer algumas divisões e cheguei em:

Gabarito é:

e
![1+ \sqrt[]{2} 1+ \sqrt[]{2}](/latexrender/pictures/a1e50b8675f5d91bf143fae9923d5966.png)
-
Questioner
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Abr 20, 2010 22:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Douglasm » Dom Mai 16, 2010 18:37
Façamos novamente por partes:
1ª condição:

(Isso pode ser facilmente notado pelo gráfico da função. Como a concavidade desta é voltada para cima, os valores maiores que zero serão aqueles que
não estarão entre as raízes.)
2ª condição:
(Aqui os valores da função menores que zero estarão entre as raízes.)
Unindo as duas condições:

Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Desigualdade
por Claudin » Qui Jan 17, 2013 14:50
- 2 Respostas
- 2343 Exibições
- Última mensagem por Claudin

Sex Jan 18, 2013 20:14
Álgebra Linear
-
- Resolvendo a desigualdade...
por Aliocha Karamazov » Qua Abr 06, 2011 19:55
- 3 Respostas
- 2417 Exibições
- Última mensagem por Aliocha Karamazov

Qua Abr 06, 2011 23:20
Funções
-
- integral com a desigualdade
por stuart clark » Seg Mai 30, 2011 00:36
- 1 Respostas
- 1518 Exibições
- Última mensagem por Neperiano

Qua Jun 22, 2011 09:54
Cálculo: Limites, Derivadas e Integrais
-
- Desigualdade Triangular
por Claudin » Sex Set 09, 2011 09:40
- 1 Respostas
- 1750 Exibições
- Última mensagem por LuizAquino

Sex Set 09, 2011 10:56
Cálculo: Limites, Derivadas e Integrais
-
- desigualdade:prova
por Victor Gabriel » Ter Jun 18, 2013 13:48
- 0 Respostas
- 1027 Exibições
- Última mensagem por Victor Gabriel

Ter Jun 18, 2013 13:48
Teoria dos Números
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.