• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de sistemas (método de Gauss-Jordan)

Resolução de sistemas (método de Gauss-Jordan)

Mensagempor Danilo » Qua Nov 28, 2012 20:08

Resolver o sistema utilizando o método de Gauss-Jordan

2x1 + 2x2 + 2x3 = 0
-2X1+ 5x2+2x3 = 1
8x1 + x2 + 4x3 = -1

Bom, colocando o sistema na forma matricial, escalonando e colocando na forma reduzida... eu cheguei na seguinte matriz:

\begin{pmatrix}
   1 & 0 & \frac{3}{7} &  \frac{-1}{7}\\ 
   0 & 1 &  \frac{4}{7}& \frac{1}{7}
   

\end{pmatrix}

Bom, na verdade a matriz é 3x3, sendo a última linha sendo composta só por zeros.. mas eu não consegui representar usando o latex.

A resposta, segundo o livro é x1 = -1/7 - 3/7\alpha
x2 = 1/7 - 4/7 \alpha
x3 = \alpha

Eu não entendi a resposta... (ela está na forma matricial, sendo x1, x2, x3 representando uma coluna e cada linha o outro lado da igualdade...)

na última linha fica apenas 0 0 0 0... por que isso vai ser igual a \alpha ?????? Grato desde já!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Resolução de sistemas (método de Gauss-Jordan)

Mensagempor e8group » Qua Nov 28, 2012 20:42

A última linha é composta por zeros certo ? Se isto for verdade, quer dizer que para quaisquer valores que x_3 assumir implicará uma solução verdadeira que satisfaz cada equação ,isto é, para cada valor que \alpha assumir temos uma nova solução ,infintas soluções . Para compreender isto , note que inicialmente temos uma matriz 3\times 3 ( 3 equações e 3 incógnitas ) .Mas, após operações elementares , obtemos 2 equações para 3 incógnitas ,como o número de equações é menor que o de variáveis ,há de esperar que teremos uma incógnita em função da outra .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59