por nicolegcg » Seg Jun 11, 2012 17:50
Estou estudando equações algébricas, porém não sei como descobrir as raízes de uma equação de 3º grau a não ser pelo método da tentativa. Sei como proceder depois de descobrir a primeira raíz.
2x³ - 19x² + 37x - 14
-
nicolegcg
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Jun 11, 2012 17:44
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: cursando
por nicolegcg » Seg Jun 11, 2012 18:04
nicolegcg escreveu:Estou estudando equações algébricas, porém não sei como descobrir as raízes de uma equação de 3º grau a não ser pelo método da tentativa. Sei como proceder depois de descobrir a primeira raíz.
2x³ - 19x² + 37x - 14
tenho a resposta desse exercicio S={1/2, 2, 7}
Estava tentando pelo método do p/q mas com ele nao dá frações, dá?
-
nicolegcg
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Jun 11, 2012 17:44
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: cursando
por Russman » Seg Jun 11, 2012 18:40
Ja ouviu falar no método de Tartaglia?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Cleyson007 » Seg Jun 11, 2012 22:12
Boa noite Nicole e Russman!
Eu também me interessei pelo exercício..
Nicole, por favor tente resolver utilizando o conselho do Russman. Vou deixar um link aqui com a explicação do método de tartaglia com exemplo resolvido.
http://www.profcardy.com/cardicas/cardano.phpComente qualquer dúvida
Até mais.
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por nicolegcg » Ter Jun 12, 2012 14:45
ainda não aprendi este método na escola, mas muito obrigada pela sugestão. Fazendo pelo método do p/q sempre descubro uma das raízes, não todas, então serviu pra mim descobrir alguma delas, assim, diminuo o grau da equação e depois, faço o método de Ruffini.
-
nicolegcg
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Jun 11, 2012 17:44
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- equações de 2º grau
por Lismara » Seg Ago 31, 2009 23:25
- 4 Respostas
- 2665 Exibições
- Última mensagem por Lismara

Ter Set 01, 2009 21:42
Sistemas de Equações
-
- Equações 2º Grau
por Quatroemes » Dom Mar 21, 2010 20:53
- 2 Respostas
- 2436 Exibições
- Última mensagem por Quatroemes

Seg Mar 22, 2010 11:34
Funções
-
- equacoes do 2 Grau
por guillcn » Qui Jun 30, 2011 12:30
- 1 Respostas
- 1447 Exibições
- Última mensagem por joaofonseca

Qui Jun 30, 2011 15:25
Equações
-
- equaçoes do 1 grau
por thalia alexandrina » Seg Out 10, 2011 14:29
- 3 Respostas
- 2834 Exibições
- Última mensagem por MarceloFantini

Ter Out 11, 2011 23:06
Sistemas de Equações
-
- Equações do 3º grau
por baianinha » Qua Mar 14, 2012 16:09
- 3 Respostas
- 2114 Exibições
- Última mensagem por nicolegcg

Ter Jun 12, 2012 14:47
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.