• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações de 3º grau

Equações de 3º grau

Mensagempor nicolegcg » Seg Jun 11, 2012 17:50

Estou estudando equações algébricas, porém não sei como descobrir as raízes de uma equação de 3º grau a não ser pelo método da tentativa. Sei como proceder depois de descobrir a primeira raíz.

2x³ - 19x² + 37x - 14
nicolegcg
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Jun 11, 2012 17:44
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando

Re: Equações de 3º grau

Mensagempor nicolegcg » Seg Jun 11, 2012 18:04

nicolegcg escreveu:Estou estudando equações algébricas, porém não sei como descobrir as raízes de uma equação de 3º grau a não ser pelo método da tentativa. Sei como proceder depois de descobrir a primeira raíz.

2x³ - 19x² + 37x - 14


tenho a resposta desse exercicio S={1/2, 2, 7}
Estava tentando pelo método do p/q mas com ele nao dá frações, dá?
nicolegcg
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Jun 11, 2012 17:44
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando

Re: Equações de 3º grau

Mensagempor Russman » Seg Jun 11, 2012 18:40

Ja ouviu falar no método de Tartaglia?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Equações de 3º grau

Mensagempor Cleyson007 » Seg Jun 11, 2012 22:12

Boa noite Nicole e Russman!

Eu também me interessei pelo exercício..

Nicole, por favor tente resolver utilizando o conselho do Russman. Vou deixar um link aqui com a explicação do método de tartaglia com exemplo resolvido.

http://www.profcardy.com/cardicas/cardano.php

Comente qualquer dúvida :y:

Até mais.

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equações de 3º grau

Mensagempor nicolegcg » Ter Jun 12, 2012 14:45

ainda não aprendi este método na escola, mas muito obrigada pela sugestão. Fazendo pelo método do p/q sempre descubro uma das raízes, não todas, então serviu pra mim descobrir alguma delas, assim, diminuo o grau da equação e depois, faço o método de Ruffini.
nicolegcg
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Jun 11, 2012 17:44
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: