• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema linear

Sistema linear

Mensagempor benni » Ter Jul 12, 2011 13:57

Uma liga metálica L1 contém 30% de ouro e 70% de prata, e outra liga L2 contém 60% de ouro e 40% de prata.Quantos gramas deve-se tomar de cada uma a fim de formar 100 gramas de uma liga com igual quantidade de ouro e prata?
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Sistema linear

Mensagempor benni » Ter Jul 12, 2011 19:58

Pensei em um sistema :
chamei ouro de X
Prata de Y
como:
o,3x + 0,7y = 1
0,6x + 0,4y = 1
x + y = 100
agora estou confuso na obtenção de x e y .
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Sistema linear

Mensagempor benni » Qua Jul 13, 2011 14:57

Também posso pensar que:
o,3x + 0,7y = 1
0,6x + 0,4y = 1
0,5x + 0,5y = 100
mas e ai?
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Sistema linear

Mensagempor admin » Qui Jul 14, 2011 04:04

Olá benni.

Ao postar sua dúvida inicial, procure sempre enviar ao mesmo tempo suas tentativas e comentários.
Embora você tenha complementado o tópico horas depois, sua primeira mensagem em geral não é vista com atenção pelos demais usuários do fórum por conter apenas o enunciado do problema.
O próprio complemento depois também acaba prejudicando a localização por "Ver mensagens sem resposta" na página inicial, ou seja, detalhes que comprometem sua ajuda.


Sobre sua dúvida, minha primeira observação é a seguinte: não comece fazendo equações se ainda não entendeu o problema, nem nomeando variáveis.
Esta prática é prejudicial pois seus pontos de partidas podem estar errados e só tornarão ainda mais obscuro seu trabalho.
Esqueça por um instante sistemas ou equações e pense em compreender o problema em si.
No primeiro passo com a compreensão, você poderia fazer uma representação assim:

\begin{tabular}{c|c|c|c|}
& \text{quantidade liga} & \text{quantidade ouro} & \text{quantidade prata} \\ \hline
\text{L1} & x & 0,3x & 0,7x \\ \hline
\text{L2} & y & 0,6y & 0,4y \\ \hline
\text{L3} & 100 & 50 & 50 \\ \hline
\end{tabular}

Note que as equações serão mera consequência deste entendimento.
Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Sistema linear

Mensagempor benni » Seg Jul 18, 2011 21:22

Fabio , muito obrigado pela orientação , a ansiedade da resolução nos leva a erro.
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D