• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matriz]- inversa de uma matriz

[Matriz]- inversa de uma matriz

Mensagempor Ana_Rodrigues » Seg Mar 26, 2012 08:54

Olá não estou conseguindo achar a inversa dessa matriz:

4__-1__2__-2
3__-1__0__0
2___3__1__0
0___7__1__1


Meu resultado esta dando:

-1____-1____-4_____-2
-3____-4____-12____-6
11____14____43____22
10____14____41____21


e o resultado do gabarito é:

-1___-1___4___-2
-3___-4___12__-6
11___14__-43__22
10___14__-41__21


Obs: Eu não usei o editor de fórmulas porque lá eu não vi como colocar uma matriz desta ordem. O mínimo possível que eu pude ver é uma matriz quadrada de ordem 2.

Agradeço desde já a quem me tirar essa dúvida!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matriz]- inversa de uma matriz

Mensagempor LuizAquino » Seg Mar 26, 2012 12:51

Ana_Rodrigues escreveu:Olá não estou conseguindo achar a inversa dessa matriz:

4__-1__2__-2
3__-1__0__0
2___3__1__0
0___7__1__1


Meu resultado esta dando:

-1____-1____-4_____-2
-3____-4____-12____-6
11____14____43____22
10____14____41____21


e o resultado do gabarito é:

-1___-1___4___-2
-3___-4___12__-6
11___14__-43__22
10___14__-41__21


Você errou alguma operação durante a resolução do exercício. Obviamente, não temos como adivinhar onde está o seu erro. Você precisa enviar a sua resolução para que possamos corrigi-la.

Ana_Rodrigues escreveu:Obs: Eu não usei o editor de fórmulas porque lá eu não vi como colocar uma matriz desta ordem. O mínimo possível que eu pude ver é uma matriz quadrada de ordem 2.


Use o código:

Código: Selecionar todos
[tex]
\begin{bmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & l & m \\
n & o & p & q
\end{bmatrix}
[/tex]


O resultado desse código é:

\begin{bmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & l & m \\
n & o & p & q
\end{bmatrix}

Perceba que "&" separa as colunas, enquanto que "\\" separa as linhas. Usando adequadamente esses caracteres você pode escrever matrizes de qualquer ordem.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Matriz]- inversa de uma matriz

Mensagempor Ana_Rodrigues » Seg Mar 26, 2012 18:05

Eu já descobri onde errei, em uma das operações eu errei o sinal de um só termo, e a terceira coluna ficou com o sinal trocado!

Obrigada!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?