por DanielRJ » Sex Set 10, 2010 22:27
Seja M uma matriz quadrada de 3° ordem: constroi-se uma nova matriz N em que cada coluna é a soma das outras duas colunas da matriz M. Sendo A o determinante de M e B o determinante de N, tem-se:
a)B=0
b)B=A
c)B=2A
d)A=2B
Eu não entendi a questão principalmente a parte que está sublinhada alguem poderia me explicar?
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Sáb Set 11, 2010 03:28
Ilustrando:

Então a matriz N é:

A matriz N é uma matriz cujas colunas são soma das outras duas de M. A primeira coluna é soma da segunda e da terceira de M, a segunda é soma da primeira e da terceira e a terceira é soma da primeira e da segunda.
Existe uma propriedade de determinantes que diz que se uma matriz B é resultado de uma matriz A pegando uma de suas filas e adicionando um múltiplo de outra(s), então

. Como esse é o caso aqui, alternativa B.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielRJ » Sáb Set 11, 2010 18:40
Obrigado eu não conhecia essa propriedade.
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinantes
por Cleyson007 » Dom Jul 20, 2008 11:55
- 1 Respostas
- 5191 Exibições
- Última mensagem por admin

Dom Jul 20, 2008 18:58
Matrizes e Determinantes
-
- determinantes..
por GABRIELA » Ter Set 15, 2009 20:12
- 2 Respostas
- 3864 Exibições
- Última mensagem por GABRIELA

Qui Set 17, 2009 18:13
Matrizes e Determinantes
-
- determinantes
por carolina camargo » Sáb Jul 10, 2010 18:03
- 1 Respostas
- 3119 Exibições
- Última mensagem por Molina

Dom Jul 11, 2010 15:21
Álgebra Elementar
-
- determinantes
por carolina camargo » Sáb Jul 10, 2010 18:08
- 1 Respostas
- 2921 Exibições
- Última mensagem por Tom

Sáb Jul 10, 2010 23:16
Álgebra Elementar
-
- Determinantes
por aline2010 » Seg Jul 19, 2010 14:13
- 1 Respostas
- 3300 Exibições
- Última mensagem por Douglasm

Seg Jul 19, 2010 19:26
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.