
então, a soma dos elementos da diagonal principal de
é igual a:gabarito:

Então, eu achei oq está dentro do parênteses como resposta.. não entendi o porquê do "1/4"
alguém pode fazer pra mim? obrigada

é igual a:




![det AB = (2+a+a^2)\;.\;[(1+a) + 2]\; - \; [(2+a+a^2) + 2a]\;.\;(1+a) = 4+2a+2a^2 - 2a - 2a^2 = 4 det AB = (2+a+a^2)\;.\;[(1+a) + 2]\; - \; [(2+a+a^2) + 2a]\;.\;(1+a) = 4+2a+2a^2 - 2a - 2a^2 = 4](/latexrender/pictures/1956ff42b63d2e9dec41079bf885ec1e.png)







Voltar para Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)