por souzalucasr » Qua Ago 22, 2012 14:26
Pessoal,
Estou com uma dúvida na seguinte questão conceitual*:
11. Suponha que
e
onde
são matrizes tais que a multiplicação esteja definida.
a)
?
b) Se existir uma matriz
, tal que
, onde
é a matriz identidade, então
?Bem, a resposta do item (a) é
não, pois não necessariamente

quando

.
Minha dúvida está no item (b).
Entendo que se

, então

, visto que uma matriz multiplicada por sua inversa é igual à matriz identidade. No entanto, eu não sei justificar como esse fato afetaria a proposição acima, ou seja, se o fato de que a matriz

tem uma inversa teria alguma influência na proposição de que

.
Alguém poderia me ajudar?
*Fonte: Álgebra Linear, 3a edição, pg. 12, Ed. Harbra, Boldrini et al
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
por MarceloFantini » Qua Ago 22, 2012 20:47
Uma matriz pode ter inversa à esquerda, daí teríamos que

, e usando associatividade segue

. Usando o fato que

, então

e

e portanto

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por souzalucasr » Qua Ago 29, 2012 11:44
MarceloFantini escreveu:Uma matriz pode ter inversa à esquerda, daí teríamos que

, e usando associatividade segue

. Usando o fato que

, então

e

e portanto

.
Obrigado pela resposta, Marcelo!
Eu poderia dizer então, a partir de sua resposta para o item (b) e da resposta que apresentei para o item (a), que sempre que uma matriz

é não-singular, então

implica em

?
Digo isso pois entendo que no caso exposto em (a), em que

, a matriz deve ser singular para que

seja verdadeiro. Estou correto em afirmar isso?
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
por MarceloFantini » Qua Ago 29, 2012 12:22
Uma matriz ser não-singular significa que ela tem inversa pela direita e pela esquerda, o que não precisa ser verdade. A resposta para o item (a) é claro que não necessariamente, tome

,

e

, então

mas

.
Note que ele não falou nada sobre serem matrizes quadradas, significa que não podemos falar em A ser singular ou não.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por souzalucasr » Qua Ago 29, 2012 12:34
Perfeito, Marcelo. Muito obrigado, novamente!
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida conceitual sobre funções.
por Sobreira » Seg Fev 25, 2013 22:29
- 1 Respostas
- 1529 Exibições
- Última mensagem por Russman

Ter Fev 26, 2013 02:15
Funções
-
- (Vetor Colinear) Dúvida Conceitual
por Man Utd » Sáb Abr 20, 2013 17:42
- 5 Respostas
- 6822 Exibições
- Última mensagem por LuizAquino

Seg Abr 29, 2013 17:05
Geometria Analítica
-
- Função inversa : imagens + dúvida conceitual
por studieren » Qua Abr 28, 2010 17:08
- 4 Respostas
- 3630 Exibições
- Última mensagem por studieren

Sáb Mai 01, 2010 18:31
Funções
-
- Limite conceitual
por souzafontes » Ter Mai 31, 2011 14:35
- 10 Respostas
- 4345 Exibições
- Última mensagem por LuizAquino

Qua Jun 01, 2011 14:34
Cálculo: Limites, Derivadas e Integrais
-
- [Matrizes] Dúvida .
por e8group » Ter Out 16, 2012 22:12
- 2 Respostas
- 2706 Exibições
- Última mensagem por e8group

Qui Out 18, 2012 11:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.