• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinação Linear] com Matrizes, URGENTE!!!

[Combinação Linear] com Matrizes, URGENTE!!!

Mensagempor cotonete » Dom Jan 22, 2012 23:34

Olá,
Espero que possam me ajudar estou com dúvida em uma questão onde se pede para determinar o subespaço gerado pelos vetores de um conjunto dado, a questão tem vária letras mas a que me causou duvidas foi a seguinte:

V = M_2_x_2 (\Re), A = {v_1,v_2,v_3}, onde

v_1 =  
\begin{pmatrix}      
   2 & -3  \\ 
   1 & 1 
\end{pmatrix}


v_2 = 
\begin{pmatrix}


   4 & -6  \\ 
   2 & 2 
\end{pmatrix}


v_3 =
\begin{pmatrix}
   0 & 2  \\ 
   1 & 0 
\end{pmatrix}

Então eu montei uma equação na qual uma matriz generica 2x2 sera igual a soma dos vetores(v1,v2,v3) multiplicados pelos escalares com os escalares(a,b,c) , com isso chego em um sistema de 4 equações e 3 icógnitas (a,b,c). Só que eu chego no seguinte ponto do sistema e tenho duvida no que fazer:

\begin{pmatrix}
   1 & 2 & 0 & -w  \\ 
   0 & 0 & 0 &  y+5w-2z \\ 
   0 & 0 & 0 &  x-2w \\
   0 & 0 & -1 & w-z\\
\end{pmatrix}

Até pensei em deixar x,y e z em função de w e z e o espaço vetorial seria esse:

\begin{pmatrix}
   2w & 2z-5w  \\ 
   z & w \\
\end{pmatrix}

Porém a resposta é essa:

\begin{pmatrix}
   2a & 2b-5a  \\ 
   b & a \\
\end{pmatrix}

Isso que não entendi, é só chamar w de a e z de b que fica certo,queria saber o que estou errando. Quem souber me ajude pois tenho prova de álgebra linear quinta agora, pois como a faculdade ficou de greve tive apenas 2 semanas de férias. Caso tenha postado no lugar errado me desculpem, sou novo no fórum.
cotonete
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jan 22, 2012 22:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica
Andamento: cursando

Re: [Combinação Linear] com Matrizes, URGENTE!!!

Mensagempor MarceloFantini » Seg Jan 23, 2012 05:52

Mas a letra não faz diferença, sua resposta está certa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Combinação Linear] com Matrizes, URGENTE!!!

Mensagempor cotonete » Seg Jan 23, 2012 21:50

E eu me matando igual um doido por causa dessas letras,muito obrigado MarceloFantini, pode parecer uma dúvida besta mas eu realmente não estava seguro com aquela respoosta, mas agora percebi que estou pelo caminho certo.
cotonete
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jan 22, 2012 22:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?